Homework No.4, 553.794, Due April 10, 2023.

Problem 1. This problem considers a piecewise smooth vector field \mathbf{F} defined for a simply-connected open set Ω_{1} with smooth boundary $\partial \Omega=\partial \Omega_{1}$ and simply-connected open complement $\Omega_{2}=\mathbb{R}^{3} \backslash \bar{\Omega}_{1}$ such that

$$
\mathbf{F}(\mathbf{x})= \begin{cases}\mathbf{F}_{1}(\mathbf{x}) & \mathbf{x} \in \Omega_{1} \\ \mathbf{F}_{2}(\mathbf{x}) & \mathbf{x} \in \Omega_{2}\end{cases}
$$

with smooth $\mathbf{F}_{1}: \Omega_{1} \rightarrow \mathbb{R}^{3}$ and $\mathbf{F}_{2}: \Omega_{2} \rightarrow \mathbb{R}^{3}$.
(a) Defining the distributional divergence of \mathbf{F} by

$$
\int(\boldsymbol{\nabla} \cdot \mathbf{F}) \varphi d V=-\int \mathbf{F} \cdot \boldsymbol{\nabla} \varphi d V
$$

for a C^{∞} and rapidly decaying scalar test function φ, show that

$$
\boldsymbol{\nabla} \cdot \mathbf{F}=\{\boldsymbol{\nabla} \cdot \mathbf{F}\}+\mathbf{n} \cdot[\mathbf{F}] \delta(d)
$$

where

$$
\{\boldsymbol{\nabla} \cdot \mathbf{F}\}(\mathrm{x})=\left\{\begin{array}{cc}
\boldsymbol{\nabla} \cdot \mathbf{F}_{1}(\mathrm{x}) & \mathrm{x} \in \Omega_{1} \\
\boldsymbol{\nabla} \cdot \mathbf{F}_{2}(\mathrm{x}) & \mathrm{x} \in \Omega_{2}
\end{array}\right.
$$

and where $d(\mathbf{x})=\operatorname{dist}(\mathbf{x}, \partial \Omega),[\mathbf{F}]=\mathbf{F}_{2}-\mathbf{F}_{1}$ on $\partial \Omega$, and \mathbf{n} is the unit normal on $\partial \Omega$ pointing from Ω_{1} into Ω_{2}.
(a) Defining similarly the distributional curl of \mathbf{F} by

$$
\int(\boldsymbol{\nabla} \times \mathbf{F}) \cdot \boldsymbol{\varphi} d V=\int \mathbf{F} \cdot(\boldsymbol{\nabla} \times \varphi) d V
$$

for a C^{∞} and rapidly decaying vector test function $\boldsymbol{\varphi}$, show that

$$
\boldsymbol{\nabla} \times \mathbf{F}=\{\boldsymbol{\nabla} \times \mathbf{F}\}+\mathbf{n} \times[\mathbf{F}] \delta(d)
$$

where

$$
\{\boldsymbol{\nabla} \times \mathbf{F}\}(\mathbf{x})= \begin{cases}\boldsymbol{\nabla} \times \mathbf{F}_{1}(\mathbf{x}) & \mathrm{x} \in \Omega_{1} \\ \boldsymbol{\nabla} \times \mathbf{F}_{2}(\mathbf{x}) & \mathrm{x} \in \Omega_{2}\end{cases}
$$

and all other definitions are the same as in part (a).

Problem 2. We study results relevant to the multipole expansion for the vector potential $\boldsymbol{\psi}(\mathbf{x})$ of a differentiable, conditionally integrable, solenoidal velocity field $\mathbf{u}(\mathbf{x})$ in the domain $\Omega=\mathbb{R}^{3} \backslash B$ outside a smooth, simply-connected body B.
(a) Prove that the integral involving the vorticity $\boldsymbol{\omega}=\boldsymbol{\nabla} \times \mathbf{u}$

$$
\int_{\Omega} x_{i}^{\prime} \omega_{j}^{\prime} d V^{\prime}+\int_{\partial B} x_{i}^{\prime}(\mathbf{n} \times \mathbf{u})_{j}^{\prime} d A^{\prime}
$$

is anti-symmetric in i and j.
(b) Use the result in (a) to show that the vector impulse defined by

$$
\mathbf{I}=\frac{1}{2} \int_{\Omega} \mathbf{x}^{\prime} \times \boldsymbol{\omega}^{\prime} d V^{\prime}+\frac{1}{2} \int_{\partial B} \mathbf{x}^{\prime} \times(\mathbf{n} \times \mathbf{u})^{\prime} d A^{\prime}
$$

satisfies

$$
\mathbf{I} \times \mathbf{x}=\int_{\Omega}\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right) \boldsymbol{\omega}^{\prime} d V^{\prime}+\int_{\partial B}\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)(\mathbf{n} \times \mathbf{u})^{\prime} d A^{\prime}
$$

Problem 3. This problem gives a simple derivation of the relation between momentum and impulse, with the same assumptions on velocity $\mathbf{u}(\mathbf{x})$ as Problem 2.
(a) Derive the following identity involving the vorticity:

$$
\mathbf{x} \times \boldsymbol{\omega}=x_{i} \boldsymbol{\nabla} u_{i}-(\mathbf{x} \cdot \boldsymbol{\nabla}) \mathbf{u}
$$

(b) Use the result in part (a) to show that impulse \mathbf{I} and momentum $\mathbf{P}=\int_{\Omega} \mathbf{u} d V$ are related by

$$
2 \mathbf{I}=2 \mathbf{P}+\lim _{R \rightarrow \infty} \int_{S_{R}} \mathbf{x} \times(\hat{\mathbf{x}} \times \mathbf{u}) d A
$$

where S_{R} is the sphere of radius R centered at the origin.
(c) Using the asymptotic far-field expansion

$$
\mathbf{u}(\mathbf{x}) \sim \frac{-\mathbf{I} r^{2}+3(\mathbf{I} \cdot \mathbf{x}) \mathbf{x}}{4 \pi r^{5}}, \quad r \rightarrow \infty
$$

show that

$$
\lim _{R \rightarrow \infty} \int_{S_{R}} \mathbf{x} \times(\hat{\mathbf{x}} \times \mathbf{u}) d A=\frac{2}{3} \mathbf{I}
$$

and conclude from part (b) that $\mathbf{P}=\frac{2}{3} \mathbf{I}$.

Problem 4. With the same notations and assumptions as in the derivation of the Josephson-Anderson relation for external flow around a smooth body B, derive the following alternative expressions:

$$
\begin{align*}
& \int_{\Omega} \mathbf{u}_{\phi} \cdot \mathbf{u} \times \boldsymbol{\omega} d V=\int_{\Omega} \boldsymbol{\nabla} \mathbf{u}_{\phi}: \mathbf{u}_{\omega} \mathbf{u}_{\omega} d V \tag{a}\\
& \int_{\Omega} \mathbf{u}_{\phi} \cdot \nu \boldsymbol{\nabla} \times \boldsymbol{\omega} d V=\int_{\partial B} \mathbf{u}_{\phi} \cdot \boldsymbol{\tau}_{w} d A \tag{b}
\end{align*}
$$

Carefully justify the neglect of boundary terms in integration by parts.

Problem 5. We consider in this problem the general translational motion of a solid body through an incompressible fluid at rest at infinity. The body is represented by the time-dependent set

$$
B(t)=B+\mathbf{X}(t)
$$

where $\mathbf{X}:[0, T] \rightarrow \mathbb{R}^{3}$ is a smooth function with $\mathbf{X}(0)=\mathbf{0}$ and B is a simplyconnected open set with a smooth boundary ∂B. Set $\mathbf{V}(t)=\dot{\mathbf{X}}(t)$ and $\mathbf{A}(t)=\ddot{\mathbf{X}}(t)$.
(a) The incompressible Navier-Stokes solution $(\overline{\mathbf{u}}(\overline{\mathbf{x}}, t), \bar{p}(\overline{\mathbf{x}}, t))$ in the space domain $\Omega(t)=\mathbb{R}^{3} \backslash B(t)$ for the fluid reference frame satisfies the boundary conditions

$$
\overline{\mathbf{u}}=\mathbf{V}(t) \quad \text { on } \partial B(t) ; \quad \overline{\mathbf{u}} \rightarrow \mathbf{0} \quad \text { as }|\mathbf{x}| \rightarrow \infty
$$

Show that the transformations

$$
\mathbf{u}(\mathbf{x}, t)=\overline{\mathbf{u}}(\mathbf{x}+\mathbf{X}(t), t)-\mathbf{V}(t), \quad p(\mathbf{x}, t)=\bar{p}(\mathbf{x}+\mathbf{X}(t), t)+\mathbf{A}(t) \cdot \mathbf{x}
$$

give the solution of the incompressible Navier-Stokes equation in the space domain $\Omega=\mathbb{R}^{3} \backslash B$ for the body frame, which satisfies the boundary conditions

$$
\mathbf{u}=\mathbf{0} \quad \text { on } \partial B ; \quad \mathbf{u} \rightarrow-\mathbf{V}(t) \quad \text { as }|\mathbf{x}| \rightarrow \infty
$$

(b) For the same situation as in part (a), consider the potential solution $\overline{\mathbf{u}}_{\phi}=\overline{\boldsymbol{\nabla}} \bar{\phi}$ of the incompressible Euler equations in the fluid frame, with $\bar{\phi}(\overline{\mathbf{x}}, t)$ solving the Laplace equation $\bar{\triangle} \bar{\phi}=0$ in $\Omega(t)$ with boundary conditions

$$
\frac{\partial \bar{\phi}}{\partial n}=\mathbf{V}(t) \cdot \mathbf{n} \quad \text { on } \partial B(t) ; \quad \bar{\phi} \rightarrow 0 \quad \text { as }|\mathbf{x}| \rightarrow \infty
$$

and with pressure $\bar{p}_{\phi}(\overline{\mathbf{x}}, t)$ given by the Bernoulli equation

$$
\partial_{t} \bar{\phi}+\frac{1}{2}|\overline{\boldsymbol{\nabla}} \bar{\phi}|^{2}+\bar{p}_{\phi}=\bar{c}(t)
$$

for some arbitrary function $\bar{c}(t)$. Show that the transformations

$$
\phi(\mathbf{x}, t)=\bar{\phi}(\mathbf{x}+\mathbf{X}(t), t)-\mathbf{V}(t) \cdot \mathbf{x}, \quad p_{\phi}(\mathbf{x}, t)=\bar{p}_{\phi}(\mathbf{x}+\mathbf{X}(t), t)+\mathbf{A}(t) \cdot \mathbf{x}
$$

give the solution of the incompressible Euler equation in the space domain $\Omega=\mathbb{R}^{3} \backslash B$ for the body frame, where p_{ϕ} is obtained from the Bernoulli equation and ϕ satisfies the Laplace equation $\triangle \phi=0$ in Ω with the boundary conditions

$$
\frac{\partial \phi}{\partial n}=0 \quad \text { on } \partial B ; \quad \phi \rightarrow-\mathbf{V}(t) \cdot \mathbf{x} \quad \text { as }|\mathbf{x}| \rightarrow \infty
$$

Problem 6. In this problem we derive a generalized d'Alembert theorem for the arbitrary translational motion of a solid body through an incompressible fluid at rest at infinity, working in the body frame as in part (b) of Problem 5.
(a) Following Lighthill (1979) we define a "pseudo-momentum" of the potential Euler solution by

$$
\mathbf{P}_{\phi}=-\int_{\partial B} \phi \mathbf{n} d A
$$

Explain why the usual momentum $\int_{\Omega} \mathbf{u}_{\phi} d V$ diverges, but coincides with \mathbf{P}_{ϕ} up to an infinite constant and show that

$$
\frac{d \mathbf{P}_{\phi}}{d t}=\int_{\partial B}\left(p_{\phi}+\frac{1}{2}\left|\mathbf{u}_{\phi}\right|^{2}\right) \mathbf{n} d A
$$

(b) Prove that $\boldsymbol{\nabla}\left(\frac{1}{2}\left|\mathbf{u}_{\phi}\right|^{2}\right)=\left(\mathbf{u}_{\phi} \cdot \boldsymbol{\nabla}\right) \mathbf{u}_{\phi}$ and exploit this relation and the methods used to prove the d'Alembert theorem to show that

$$
\int_{\partial B} \frac{1}{2}\left|\mathbf{u}_{\phi}\right|^{2} \mathbf{n} d A=\mathbf{0}
$$

(c) Conclude from parts (a) and (b) that

$$
\frac{d \mathbf{P}_{\phi}}{d t}=\int_{\partial B} p_{\phi} \mathbf{n} d A=\mathbf{F}_{\phi}
$$

where \mathbf{F}_{ϕ} is the force of the body acting on the fluid. Conclude that the time-average

$$
\overline{\mathbf{F}}_{\phi}:=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mathbf{F}_{\phi}(t) d t=\mathbf{0}
$$

whenever $\mathbf{V}(t)$ and thus $\mathbf{P}_{\phi}(t)$ remain bounded in time.

