
Homework No.4, 553.794, Due April 10, 2023.

Problem 1. This problem considers a piecewise smooth vector field F defined for a
simply-connected open set Ω1 with smooth boundary ∂Ω = ∂Ω1 and simply-connected
open complement Ω2 = R3\Ω̄1 such that

F(x) =

{
F1(x) x ∈ Ω1

F2(x) x ∈ Ω2

with smooth F1 : Ω1 → R3 and F2 : Ω2 → R3.

(a) Defining the distributional divergence of F by∫
(∇·F)ϕdV = −

∫
F·∇ϕdV

for a C∞ and rapidly decaying scalar test function ϕ, show that

∇·F = {∇·F}+ n·[F]δ(d)

where

{∇·F}(x) =

{
∇·F1(x) x ∈ Ω1

∇·F2(x) x ∈ Ω2,

and where d(x) = dist(x, ∂Ω), [F] = F2 −F1 on ∂Ω, and n is the unit normal on ∂Ω
pointing from Ω1 into Ω2.

(a) Defining similarly the distributional curl of F by∫
(∇×F)·ϕ dV =

∫
F·(∇×ϕ) dV

for a C∞ and rapidly decaying vector test function ϕ, show that

∇×F = {∇×F}+ n×[F]δ(d)

where

{∇×F}(x) =

{
∇×F1(x) x ∈ Ω1

∇×F2(x) x ∈ Ω2,

and all other definitions are the same as in part (a).
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Problem 2. We study results relevant to the multipole expansion for the vector
potential ψ(x) of a differentiable, conditionally integrable, solenoidal velocity field
u(x) in the domain Ω = R3\B outside a smooth, simply-connected body B.

(a) Prove that the integral involving the vorticity ω =∇×u∫
Ω

x′iω
′
j dV

′ +

∫
∂B

x′i(n×u)′j dA
′

is anti-symmetric in i and j.

(b) Use the result in (a) to show that the vector impulse defined by

I =
1

2

∫
Ω

x′×ω′ dV ′ +
1

2

∫
∂B

x′×(n×u)′ dA′

satisfies

I×x =

∫
Ω

(x·x′)ω′ dV ′ +

∫
∂B

(x·x′)(n×u)′ dA′.

Problem 3. This problem gives a simple derivation of the relation between momen-
tum and impulse, with the same assumptions on velocity u(x) as Problem 2.

(a) Derive the following identity involving the vorticity:

x×ω = xi∇ui − (x·∇)u.

(b) Use the result in part (a) to show that impulse I and momentum P =
∫

Ω
u dV

are related by

2I = 2P + lim
R→∞

∫
SR

x×(x̂×u) dA,

where SR is the sphere of radius R centered at the origin.

(c) Using the asymptotic far-field expansion

u(x) ∼ −Ir
2 + 3(I·x)x

4πr5
, r →∞,

show that

lim
R→∞

∫
SR

x×(x̂×u) dA =
2

3
I

and conclude from part (b) that P = 2
3
I.
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Problem 4. With the same notations and assumptions as in the derivation of the
Josephson-Anderson relation for external flow around a smooth body B, derive the
following alternative expressions:

(a)
∫

Ω
uφ·u×ω dV =

∫
Ω
∇uφ:uωuω dV

(b)
∫

Ω
uφ·ν∇×ω dV =

∫
∂B

uφ·τw dA.
Carefully justify the neglect of boundary terms in integration by parts.

Problem 5. We consider in this problem the general translational motion of a solid
body through an incompressible fluid at rest at infinity. The body is represented by
the time-dependent set

B(t) = B + X(t)

where X : [0, T ] → R3 is a smooth function with X(0) = 0 and B is a simply-
connected open set with a smooth boundary ∂B. Set V(t) = Ẋ(t) and A(t) = Ẍ(t).

(a) The incompressible Navier-Stokes solution (ū(x̄, t), p̄(x̄, t)) in the space domain
Ω(t) = R3\B(t) for the fluid reference frame satisfies the boundary conditions

ū = V(t) on ∂B(t); ū→ 0 as |x| → ∞.

Show that the transformations

u(x, t) = ū(x + X(t), t)−V(t), p(x, t) = p̄(x + X(t), t) + A(t)·x

give the solution of the incompressible Navier-Stokes equation in the space domain
Ω = R3\B for the body frame, which satisfies the boundary conditions

u = 0 on ∂B; u→ −V(t) as |x| → ∞.

(b) For the same situation as in part (a), consider the potential solution ūφ = ∇̄φ̄ of
the incompressible Euler equations in the fluid frame, with φ̄(x̄, t) solving the Laplace
equation 4̄φ̄ = 0 in Ω(t) with boundary conditions

∂φ̄

∂n
= V(t)·n on ∂B(t); φ̄→ 0 as |x| → ∞,

and with pressure p̄φ(x̄, t) given by the Bernoulli equation

∂tφ̄+
1

2
|∇̄φ̄|2 + p̄φ = c̄(t)

for some arbitrary function c̄(t). Show that the transformations

φ(x, t) = φ̄(x + X(t), t)−V(t)·x, pφ(x, t) = p̄φ(x + X(t), t) + A(t)·x
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give the solution of the incompressible Euler equation in the space domain Ω = R3\B
for the body frame, where pφ is obtained from the Bernoulli equation and φ satisfies
the Laplace equation 4φ = 0 in Ω with the boundary conditions

∂φ

∂n
= 0 on ∂B; φ→ −V(t)·x as |x| → ∞.

Problem 6. In this problem we derive a generalized d’Alembert theorem for the
arbitrary translational motion of a solid body through an incompressible fluid at rest
at infinity, working in the body frame as in part (b) of Problem 5.

(a) Following Lighthill (1979) we define a “pseudo-momentum” of the potential Euler
solution by

Pφ = −
∫
∂B

φn dA.

Explain why the usual momentum
∫

Ω
uφ dV diverges, but coincides with Pφ up to an

infinite constant and show that

dPφ

dt
=

∫
∂B

(
pφ +

1

2
|uφ|2

)
n dA.

(b) Prove that∇(1
2
|uφ|2) = (uφ·∇)uφ and exploit this relation and the methods used

to prove the d’Alembert theorem to show that∫
∂B

1

2
|uφ|2n dA = 0.

(c) Conclude from parts (a) and (b) that

dPφ

dt
=

∫
∂B

pφn dA = Fφ

where Fφ is the force of the body acting on the fluid. Conclude that the time-average

Fφ := lim
T→∞

1

T

∫ T

0

Fφ(t) dt = 0

whenever V(t) and thus Pφ(t) remain bounded in time.
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