Homework No.4, 553.794, Due April 10, 2023.

Problem 1. This problem considers a piecewise smooth vector field F defined for a
simply-connected open set {23 with smooth boundary 92 = 9€2; and simply-connected
open complement 2y = R3\Q; such that

Fi(x) xe
F(x) = { Fo(x) x €0

with smooth F; : Q; — R? and Fy : Qs — R3.

(a) Defining the distributional divergence of F by

/(VoF)cp av = —/F°Vgo av
for a C'"*° and rapidly decaying scalar test function ¢, show that
V-F = {V-F} +n:[F|i(d)

where
V'Fl (X) X € Ql
{V-F}(x) = { V-Fy(x) x €D,

and where d(x) = dist(x, 092), [F] = Fo — F; on 99, and n is the unit normal on 052
pointing from §2; into €2,.

(a) Defining similarly the distributional curl of F by

/(VxF)-<pdV = /F-(VXQO) av
for a C'"*° and rapidly decaying vector test function ¢, show that
VXF = {VXF} +nx[F|i(d)

where
VXFl(X X € Ql

)
{VxF}x) = { VxFy(x) x €D,

and all other definitions are the same as in part (a).



Problem 2. We study results relevant to the multipole expansion for the vector
potential 1 (x) of a differentiable, conditionally integrable, solenoidal velocity field
u(x) in the domain = R3\ B outside a smooth, simply-connected body B.

(a) Prove that the integral involving the vorticity w = V Xu

/x;w; dv’ —l—/ ri(nxu); dA’
Q oB

is anti-symmetric in ¢ and j.

(b) Use the result in (a) to show that the vector impulse defined by
1 / / ! 1 / / /
I=- [ xX'xw'dV'+ - [ x'X(nXu)' dA
2 Ja 2 Jop

satisfies
Ixx = /(x-x/)w’ dV’+/ (x-x")(nxu) dA’".
Q OB

Problem 3. This problem gives a simple derivation of the relation between momen-
tum and impulse, with the same assumptions on velocity u(x) as Problem 2.

(a) Derive the following identity involving the vorticity:

xXw = z;Vu; — (x-V)u.

(b) Use the result in part (a) to show that impulse I and momentum P = [, udV
are related by

21 = 2P + lim XX (XXu)dA,

R—o0 SR
where Sy is the sphere of radius R centered at the origin.

(c) Using the asymptotic far-field expansion

—Ir? + 3(I-x)x

u(x) ~ gy T — 00,
show that 5
lim xX(xXu)dA = -1
R—o0 Sk 3

and conclude from part (b) that P = 2I.



Problem 4. With the same notations and assumptions as in the derivation of the
Josephson-Anderson relation for external flow around a smooth body B, derive the
following alternative expressions:

(a) JoupruxwdV = [, Vug:u,u, dV
(b) Joue vV xwdV = [, ugeT, dA.
Carefully justify the neglect of boundary terms in integration by parts.

Problem 5. We consider in this problem the general translational motion of a solid
body through an incompressible fluid at rest at infinity. The body is represented by
the time-dependent set

B(t) = B+ X(t)

where X : [0,7] — R® is a smooth function with X(0) = 0 and B is a simply-
connected open set with a smooth boundary 0B. Set V(t) = X(¢) and A(t) = X(¢).

(a) The incompressible Navier-Stokes solution (u(x,t),p(X,t)) in the space domain
Q(t) = R*\B(t) for the fluid reference frame satisfies the boundary conditions

u=V(t) ondB(t); u—0 aslx|— occ.
Show that the transformations
u(x,t) =ua(x+X(t),t) - V(t), pxt)=px+X(t),t)+ At)x

give the solution of the incompressible Navier-Stokes equation in the space domain
Q) = R3\ B for the body frame, which satisfies the boundary conditions

u=0 ondB; u——V(t) as|x|— oo

(b) For the same situation as in part (a), consider the potential solution g = V¢ of
the incompressible Euler equations in the fluid frame, with ¢(%,t) solving the Laplace
equation A¢ = 0 in (¢) with boundary conditions

9 _

an—V(t)-n on 0B(t); ¢ —0 as|x| — oo,

and with pressure p,(X,t) given by the Bernoulli equation
S
09+ 5IVl" +py = (1)

for some arbitrary function ¢(¢). Show that the transformations

P(x,1) = p(x + X(1), 1) = V()X ps(x,t) = po(x + X(1), 1) + A(t)-x

3



give the solution of the incompressible Euler equation in the space domain Q2 = R3\ B
for the body frame, where py is obtained from the Bernoulli equation and ¢ satisfies
the Laplace equation A¢ = 0 in 2 with the boundary conditions

% =0 ondB; ¢— —V(t)x as|x|— co.
n

Problem 6. In this problem we derive a generalized d’Alembert theorem for the
arbitrary translational motion of a solid body through an incompressible fluid at rest
at infinity, working in the body frame as in part (b) of Problem 5.

(a) Following Lighthill (1979) we define a “pseudo-momentum” of the potential Euler
solution by

P,=— [ ¢ndA.

0B

Explain why the usual momentum fQ u, dV diverges, but coincides with P, up to an
infinite constant and show that

dP, 1,
o _ - dA.
pr [33(}?¢+2|u¢|)n

(b) Prove that V(3|uy|?) = (us-V)u, and exploit this relation and the methods used
to prove the d’Alembert theorem to show that

1
/ ~|ugl’ndA = 0.
oB 2

(c) Conclude from parts (a) and (b) that

dP,
e _ dA—TF
dt /aB Pl ¢

where F is the force of the body acting on the fluid. Conclude that the time-average

_ 1 (T
F,:— lim —/ Fy(t)dt = 0
0

T—o0 '

whenever V (¢) and thus P4(¢) remain bounded in time.



