
Homework No.3, 553.794, Due March 20, 2023.

Problem 1. Consider a vortex tube in the form of a right circular cylinder of length
`0 with constant axial vorticity ω0 across its cross sectional area. If this vortex tube
is stretched axially into another right circular cylinder of length ` > `0 and axial
vorticity ω, explain why ω/ω0 = `/`0 for an ideal incompressible fluid.

Problem 2. (a) Consider a solid body B immersed in an incompressible fluid with
Newtonian viscous stress tensor Tν = −2νS, where S is the symmetric strain rate
tensor. Using the momentum balance equation, explain why the force F that the
fluid exerts on the body is given by the surface integral

F = ρ

∫
∂B

(pn̂ + τw) dA,

where n̂ is the surface unit normal pointing into the body.

(b) Explain why Prandtl boundary layer theory suggests that Cf
D, the frictional con-

tribution to the drag coefficient CD = F/1
2
ρU2A arising from the skin friction τw,

should scale ∝ Re−1/2 with the Reynolds number.

Problem 3. (a) By taking the time derivative d/dt, show that the Cauchy invariant

Ω(a, t) := ω(Xt(a), t)·(∇aX
t(a))−1

is a conserved quantity of 3D incompressible Euler for every particle label a. Observe
that for notational simplicity we have here suppressed explicit reference to the initial
time t0 in the Lagrangian flow map Xt

t0
(a).

(b) The Weber velocity variable is defined in terms of the standard Lagrangian velocity
v(a, t) = dXt(a)/dt = u(Xt(a), t) by

w(a, t) :=∇aX
t(a)·v(a, t)

and it is closely related to the Cauchy invariant. Establish the so-called Weber
formulation of the 3D Euler equation:

∂

∂t
w =∇a

[
1

2
|v|2 − pL

]
,

where note that pL(a, t) = p(Xt(a), t) is the Lagrangian pressure.
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(c) If C is any fixed loop in the label space, show that∮
C

da·w(a, t) =

∮
C(t)

dx·u(x, t)

where C(t) is the image of C under the Lagrangian flow Xt(a). Then use the result
in part (b) to give another proof of the Kelvin circulation theorem.

(d) Show that Cauchy’s vorticity invariant is the curl of Weber’s velocity variable:

Ω(a, t) =∇α×w(a, t).

Hint: Define Ω∗(a, t) ≡ ∇a×w(a, t) and then calculate Ω∗(a, t)·∇aX
t(a). You will

find useful the result

εijk
∂Xl

∂αi

∂Xm

∂αj

∂Xn

∂αk
= εlmn,

which you should show follows from the Jacobian, ∂(X1, X2, X3)/∂(α1, α2, α3) = 1.

Problem 4. We consider here the evolution equation backward in time for stochastic
Lagrangian trajectories

d̂sÃ
s
t(x) = u(Ãs

t(x), s) ds+
√

2ν d̂W̃(s), s < t

where d̂s denotes the backward stochastic Itō differential.

(a) Show that the stochastic deformation matrix D̃s
t(x) := (Ãs

t(x))−> satisfies the
ordinary differential equation

d

ds
D̃s
t(x) = −D̃s

t(x)(∇xu(Ãs
t(x), s))>, s < t

and the final condition D̃t
t(x) = I.

(b) If ω(x, t) is the solution of the viscous Helmholtz equation, then use the result in
part (a) to derive the following equation

d̂sω̃s(x, t) =
√

2νD̃s
t(x) (d̂W̃(s)·∇)ω(Ãs

t(x), s), s < t (∗)

for the stochastic Cauchy invariant ω̃s(x, t) := D̃s
t(x)ω(Ãs

t(x), s). You will need to
use the result for any smooth function f(x, t) that

d̂sf(Ãs
t(x), s) = (∂sf − ν4f)(Ãs

t(x), s)ds+ (d̂sÃ
s
t(x)·∇)f(Ãs

t(x), s)

This is the backward Itō rule, which is the replacement of the standard chain rule for
the backward Itō differential.
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Problem 5. We now repeat the previous problem for stochastic Lagrangian trajec-
tories in a domain Ω which are reflected at the boundary ∂Ω. These satisfy

d̂sÃ
s
t(x) = u(Ãs

t(x), s) ds+
√

2νd̂W̃(s)− νn(Ãs
t(x))d̂˜̀st(x), s < t

where n(x) at each point x ∈ ∂Ω is the surface normal vector pointing into the do-
main. Note that we have defined the (backward in time) boundary local-time density˜̀s
t(x) so that it decreases each time that the trajectory Ãs

t(x) hits the boundary. If
we now define the deformation matrix by the ODE in part (a) of Problem 4, then
prove that the modified stochastic Cauchy invariant

ω̃s(x, t) := D̃s
t(x)ω(Ãs

t(x), s) +

∫ t

s

D̃r
t (x)·σP (Ãr

t (x), r) d̂˜̀rt (x),

with σP (x, t) := −ν(n·∇)ω(x, t) satisfies equation (*) in part (b) of Problem 4.

Problem 6. We consider some statistical relations for turbulent channel flow between
two plane-parallel walls and driven by an applied pressure gradient (Poiseuille flow).
Here we take x to be the streamwise direction along the pressure gradient, y the
direction normal to the walls, and z the third spanwise direction, with the flow
velocity assumed to satisfy periodic b.c. in the x- and z-directions. With these
assumptions, all long-time averages ā of flow quantities a are constant in x and z,
except for the pressure field p which has ∂p̄/∂x < 0. Note also that the only non-
vanishing component of the mean velocity is ū in the streamwise direction, with
wall-normal component v̄ = 0 and spanwise component w̄ = 0.

(a) Prove the following three relations

vωz − wωy − ν ∂ω̄z

∂y
= Σyz = ∂h̄

∂x
= ∂p̄

∂x

wωx − uωz = Σzx = ∂h̄
∂y

uωy − vωv = Σzx = 0

where h = p+ 1
2
|u|2 is the total pressure (hydrostatic plus dynamic).

Hint: Rewrite the Navier-Stokes equation as ∂tui = 1
2
εijkΣjk − ∂ih where εijk is the

anti-symmetric Levi-Civita tensor.

(b) Use the first result in part (a) to prove that ∂
∂y

(
∂p̄
∂x

)
= 0.

(c) Derive the following kinematic identities

vωz − wωy = − ∂
∂y
uv = − ∂

∂y
u′v′

wωx − uωz = − ∂
∂y
v2 + ∂

∂y
u2 + v2 + w2.
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