Homework No.3, 553.794, Due March 20, 2023.

Problem 1. Consider a vortex tube in the form of a right circular cylinder of length ℓ_{0} with constant axial vorticity ω_{0} across its cross sectional area. If this vortex tube is stretched axially into another right circular cylinder of length $\ell>\ell_{0}$ and axial vorticity ω, explain why $\omega / \omega_{0}=\ell / \ell_{0}$ for an ideal incompressible fluid.

Problem 2. (a) Consider a solid body B immersed in an incompressible fluid with Newtonian viscous stress tensor $\mathbf{T}_{\nu}=-2 \nu \mathbf{S}$, where \mathbf{S} is the symmetric strain rate tensor. Using the momentum balance equation, explain why the force \mathbf{F} that the fluid exerts on the body is given by the surface integral

$$
\mathbf{F}=\rho \int_{\partial B}\left(p \hat{\mathbf{n}}+\boldsymbol{\tau}_{w}\right) d A,
$$

where $\hat{\mathbf{n}}$ is the surface unit normal pointing into the body.
(b) Explain why Prandtl boundary layer theory suggests that C_{D}^{f}, the frictional contribution to the drag coefficient $C_{D}=F / \frac{1}{2} \rho U^{2} A$ arising from the skin friction $\boldsymbol{\tau}_{w}$, should scale $\propto R e^{-1 / 2}$ with the Reynolds number.

Problem 3. (a) By taking the time derivative $d / d t$, show that the Cauchy invariant

$$
\boldsymbol{\Omega}(\mathbf{a}, t):=\boldsymbol{\omega}\left(\mathbf{X}^{t}(\mathbf{a}), t\right) \cdot\left(\boldsymbol{\nabla}_{a} \mathbf{X}^{t}(\mathbf{a})\right)^{-1}
$$

is a conserved quantity of 3 D incompressible Euler for every particle label a. Observe that for notational simplicity we have here suppressed explicit reference to the initial time t_{0} in the Lagrangian flow map $\mathbf{X}_{t_{0}}^{t}(\mathbf{a})$.
(b) The Weber velocity variable is defined in terms of the standard Lagrangian velocity $\mathbf{v}(\mathbf{a}, t)=d \mathbf{X}^{t}(\mathbf{a}) / d t=\mathbf{u}\left(\mathbf{X}^{t}(\mathbf{a}), t\right)$ by

$$
\mathbf{w}(\mathbf{a}, t):=\boldsymbol{\nabla}_{a} \mathbf{X}^{t}(\mathbf{a}) \cdot \mathbf{v}(\mathbf{a}, t)
$$

and it is closely related to the Cauchy invariant. Establish the so-called Weber formulation of the 3D Euler equation:

$$
\frac{\partial}{\partial t} \mathbf{w}=\boldsymbol{\nabla}_{a}\left[\frac{1}{2}|\mathbf{v}|^{2}-p_{L}\right]
$$

where note that $p_{L}(\mathbf{a}, t)=p\left(\mathbf{X}^{t}(\mathbf{a}), t\right)$ is the Lagrangian pressure.
(c) If C is any fixed loop in the label space, show that

$$
\oint_{C} d \mathbf{a} \cdot \mathbf{w}(\mathbf{a}, t)=\oint_{C(t)} d \mathbf{x} \cdot \mathbf{u}(\mathbf{x}, t)
$$

where $C(t)$ is the image of C under the Lagrangian flow $\mathbf{X}^{t}(\mathbf{a})$. Then use the result in part (b) to give another proof of the Kelvin circulation theorem.
(d) Show that Cauchy's vorticity invariant is the curl of Weber's velocity variable:

$$
\boldsymbol{\Omega}(\mathbf{a}, t)=\nabla_{\alpha} \times \mathbf{w}(\mathbf{a}, t)
$$

Hint: Define $\boldsymbol{\Omega}^{*}(\mathbf{a}, t) \equiv \boldsymbol{\nabla}_{a} \times \mathbf{w}(\mathbf{a}, t)$ and then calculate $\boldsymbol{\Omega}^{*}(\mathbf{a}, t) \cdot \boldsymbol{\nabla}_{a} \mathbf{X}^{t}(\mathbf{a})$. You will find useful the result

$$
\epsilon_{i j k} \frac{\partial X_{l}}{\partial \alpha_{i}} \frac{\partial X_{m}}{\partial \alpha_{j}} \frac{\partial X_{n}}{\partial \alpha_{k}}=\epsilon_{l m n}
$$

which you should show follows from the Jacobian, $\partial\left(X_{1}, X_{2}, X_{3}\right) / \partial\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=1$.

Problem 4. We consider here the evolution equation backward in time for stochastic Lagrangian trajectories

$$
\hat{d}_{s} \widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x})=\mathbf{u}\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}), s\right) d s+\sqrt{2 \nu} \hat{d} \widetilde{\mathbf{W}}(s), \quad s<t
$$

where \hat{d}_{s} denotes the backward stochastic Itō differential.
(a) Show that the stochastic deformation matrix $\widetilde{\mathbf{D}}_{t}^{s}(\mathbf{x}):=\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x})\right)^{-\top}$ satisfies the ordinary differential equation

$$
\frac{d}{d s} \widetilde{\mathbf{D}}_{t}^{s}(\mathbf{x})=-\widetilde{\mathbf{D}}_{t}^{s}(\mathbf{x})\left(\boldsymbol{\nabla}_{x} \mathbf{u}\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}), s\right)\right)^{\top}, \quad s<t
$$

and the final condition $\widetilde{\mathbf{D}}_{t}^{t}(\mathbf{x})=\mathbf{I}$.
(b) If $\boldsymbol{\omega}(\mathbf{x}, t)$ is the solution of the viscous Helmholtz equation, then use the result in part (a) to derive the following equation

$$
\begin{equation*}
\hat{d}_{s} \widetilde{\boldsymbol{\omega}}_{s}(\mathbf{x}, t)=\sqrt{2 \nu} \widetilde{\mathbf{D}}_{t}^{s}(\mathbf{x})(\hat{d} \widetilde{\mathbf{W}}(s) \cdot \boldsymbol{\nabla}) \boldsymbol{\omega}\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}), s\right), \quad s<t \tag{*}
\end{equation*}
$$

for the stochastic Cauchy invariant $\widetilde{\boldsymbol{\omega}}_{s}(\mathbf{x}, t):=\widetilde{\mathbf{D}}_{t}^{s}(\mathbf{x}) \boldsymbol{\omega}\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}), s\right)$. You will need to use the result for any smooth function $f(\mathbf{x}, t)$ that

$$
\hat{d}_{s} f\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}), s\right)=\left(\partial_{s} f-\nu \triangle f\right)\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}), s\right) d s+\left(\hat{d}_{s} \widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}) \cdot \boldsymbol{\nabla}\right) f\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}), s\right)
$$

This is the backward Itō rule, which is the replacement of the standard chain rule for the backward Itō differential.

Problem 5. We now repeat the previous problem for stochastic Lagrangian trajectories in a domain Ω which are reflected at the boundary $\partial \Omega$. These satisfy

$$
\hat{d}_{s} \widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x})=\mathbf{u}\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}), s\right) d s+\sqrt{2 \nu} \hat{d} \widetilde{\mathbf{W}}(s)-\nu \mathbf{n}\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x})\right) \tilde{d} \widetilde{\ell}_{t}^{s}(\mathbf{x}), \quad s<t
$$

where $\mathbf{n}(\mathbf{x})$ at each point $\mathbf{x} \in \partial \Omega$ is the surface normal vector pointing into the domain. Note that we have defined the (backward in time) boundary local-time density $\widetilde{\ell_{t}^{s}}(\mathbf{x})$ so that it decreases each time that the trajectory $\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x})$ hits the boundary. If we now define the deformation matrix by the ODE in part (a) of Problem 4, then prove that the modified stochastic Cauchy invariant

$$
\widetilde{\boldsymbol{\omega}}_{s}(\mathbf{x}, t):=\widetilde{\mathbf{D}}_{t}^{s}(\mathbf{x}) \boldsymbol{\omega}\left(\widetilde{\mathbf{A}}_{t}^{s}(\mathbf{x}), s\right)+\int_{s}^{t} \widetilde{\mathbf{D}}_{t}^{r}(\mathbf{x}) \cdot \boldsymbol{\sigma}^{P}\left(\widetilde{\mathbf{A}}_{t}^{r}(\mathbf{x}), r\right) \widetilde{d}_{t}^{r}(\mathbf{x})
$$

with $\boldsymbol{\sigma}^{P}(\mathbf{x}, t):=-\nu(\mathbf{n} \cdot \boldsymbol{\nabla}) \boldsymbol{\omega}(\mathbf{x}, t)$ satisfies equation $\left(^{*}\right)$ in part (b) of Problem 4.

Problem 6. We consider some statistical relations for turbulent channel flow between two plane-parallel walls and driven by an applied pressure gradient (Poiseuille flow). Here we take x to be the streamwise direction along the pressure gradient, y the direction normal to the walls, and z the third spanwise direction, with the flow velocity assumed to satisfy periodic b.c. in the x - and z-directions. With these assumptions, all long-time averages \bar{a} of flow quantities a are constant in x and z, except for the pressure field p which has $\partial \bar{p} / \partial x<0$. Note also that the only nonvanishing component of the mean velocity is \bar{u} in the streamwise direction, with wall-normal component $\bar{v}=0$ and spanwise component $\bar{w}=0$.
(a) Prove the following three relations

$$
\begin{gathered}
\overline{v \omega_{z}-w \omega_{y}}-\nu \frac{\partial \bar{\omega}_{z}}{\partial y}=\bar{\Sigma}_{y z}=\frac{\partial \bar{h}}{\partial x}=\frac{\partial \bar{p}}{\partial x} \\
\overline{w \omega_{x}-u \omega_{z}}=\bar{\Sigma}_{z x}=\frac{\partial \bar{h}}{\partial y} \\
\overline{u \omega_{y}-v \omega_{v}}=\bar{\Sigma}_{z x}=0
\end{gathered}
$$

where $h=p+\frac{1}{2}|\mathbf{u}|^{2}$ is the total pressure (hydrostatic plus dynamic).
Hint: Rewrite the Navier-Stokes equation as $\partial_{t} u_{i}=\frac{1}{2} \epsilon_{i j k} \Sigma_{j k}-\partial_{i} h$ where $\epsilon_{i j k}$ is the anti-symmetric Levi-Civita tensor.
(b) Use the first result in part (a) to prove that $\frac{\partial}{\partial y}\left(\frac{\partial \bar{p}}{\partial x}\right)=0$.
(c) Derive the following kinematic identities

$$
\begin{gathered}
\overline{v \omega_{z}-w \omega_{y}}=-\frac{\partial}{\partial y} \overline{u v}=-\frac{\partial}{\partial y} \overline{u^{\prime} v^{\prime}} \\
\overline{w \omega_{x}-u \omega_{z}}=-\frac{\partial}{\partial y} \overline{v^{2}}+\frac{\partial}{\partial y} \overline{u^{2}+v^{2}+w^{2}}
\end{gathered}
$$

