
Homework No.2, 550.794, Due March 6, 2023.

Problem 1. Suppose that a smooth curve C is the boundary ∂Ω of a flow domain
Ω ∈ R2 where u : Ω→ R2 is a stationary solution of the Navier-Stokes equation with
stick b.c. If ∂/∂n is the derivative along the direction of n, the unit normal at the
wall pointing into the fluid, and if ∂/∂s is the derivative in arclength s along C, then
show that the tangential velocity ut and wall-normal velocity un on C satisfy

(i) ν ∂
2ut
∂n2 = ±κτw + ∂p

∂s

(ii) ν ∂
2un
∂n2 = ∂p

∂n

where κ is the curvature of the boundary and + sign holds at points where the center
of curvature lies in the fluid and the − sign holds otherwise.

Hint: Let t be the unit tangent vector along C in the direction of increasing s and then
write the gradient as ∇ = t ∂

∂s
+ n ∂

∂n
and use the well-known relation ∂t/∂s = ±κn.

Problem 2. Let x(ξ, η, t), y(ξ, η, t) be the Lagrangian position variables defined by

ẋ = u(x, y, t)
ẏ = v(x, y, t)

and x(ξ, η, 0) = ξ, y(ξ, η, t) = η.

(a) Show by direct calculation that

d

dt
(xξyη − xηyξ) = (ux + vy)(xξyη − xηyξ)

and thus incompressibility holds if and only if xξyη−xηyξ ≡ 1. Assume true hereafter.

(b) Derive the following relations

ξx = yη, ξy = −xη, ηx = −yξ, ηy = xξ.

(c) Show that Prandtl’s equation for the velocity u in Lagrangian formulation becomes

ẍ = −px(x, t) + (xη∂ξ − xξ∂η)2ẋ.
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Problem 3. In this problem we consider an incompressible velocity field u satisfying
stick b.c. at a smooth 2D surface S ⊂ R3 with unit normal n pointing into the fluid:

(a) Defining the surface strain field by εw = ∂u
∂n

∣∣
S
, show that n · εw = 0.

(b) Defining the viscous skin friction by τw = 2νS · n|S , where Sij = 1
2
(∂iuj + ∂jui)

is the strain rate tensor, show that

τw = νεw = νωw×n

where ωw = ∇×u|S is the wall vorticity.

(c) Defining the Weingarten tensor by K = −∇n|S , show that niKij = Kijnj = 0.

(d) Defining ∆ = − ∂2un
∂n2

∣∣∣
S

and using parts (b) and (c), show that

∆ =∇s·εw = (n×∇s)·ωw

where ∇s is the surface gradient.

Problem 4. The index of a critical point x∗ = (x∗, y∗) for a 2D velocity field
u = (u(x, y), v(x, y)) is defined by taking any simple closed loop C encircling that
critical point and no other, and then defining the index as the winding number of the
map S1 → S1 that takes x ∈ C ' S1 7→ û(x) := u(x)/|u(x)| ∈ S1. More concretely,
the index is the integer number of times that the unit vector û(x) rotates around S1

as the point x moves once around C ' S1 in the positive (counterclockwise) direction.

(a) Show that the vector field (u, v) = (x,−y) has the critical point (x∗, y∗) = (0, 0)
corresponding to a saddle point with index=-1.

(b) Show that the vector field (u, v) = (−x,−2y) has the critical point (x∗, y∗) = (0, 0)
corresponding to a stable node with index=+1.

(c) Show that the vector field (u, v) = (−2x− 2y, x) has the critical point (x∗, y∗) =
(0, 0) corresponding to a stable spiral with index=+1.

To calculate the index, you may use a qualitative geometric argument.

Remark: It can be shown that the index of each critical point is independent of the
specific curve C (because it is an integer-valued function continuous under changes
of C—try it!). Also the above vector fields are “normal forms” of general saddles,
stable nodes and stable spirals, so that the results for the index of these particular
types of critical points hold in general.
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Problem 5. (a) Show that any twice-continuously differentiable, incompressible
velocity field (u, v) which is defined in the upper 2D half-plane for (x, y) with y ≥ 0
and which also vanishes at y = 0 can be written exactly as

u(x, y, t) = ūy(x, y, t)y, v(x, y, t) =
1

2
¯̄vyy(x, y, t)y

2

with

ūy(x, y, t) :=

∫ 1

0

uy(x, sy, t) ds, ¯̄vyy(x, y, t) :=

∫ 1

0

∫ 1

0

vyy(x, rsy, t) 2rdr ds.

(b) Show that incompressibility implies that

ūy,x + ¯̄vyy +
1

2
y¯̄vyy,y = 0.

(c) Assuming that there exists a material line given by the graph x = γ + yF (y, t),
derive the equation

Ft = ūy(γ + yF, y, t)− 1

2
y¯̄vyy(γ + yF, y, t)(F + yFy)

for the function F (y, t).

Problem 6. The 2D velocity field of a point vortex located at the origin (x, y) = 0
with circulation κ is given by

u =
κy

r2
, v = −κx

r2
, r2 = x2 + y2.

(a) If there is pair of vortices, one with circulation κ initially located at (x, y) = (0, a)
and the other with circulation −κ initially located at (x, y) = (0,−a), then explain
why the vortex pair move together in the x-direction with velocity uvort and calculate
this velocity.

(b) Show that v = 0 at y = 0 for the resultant velocity field of the vortex pair in (a).
Write down an explicit formula for the velocity field (u(x, y, t), v(x, y, t)) of the pair
in the upper half-plane, which thus represents the Euler solution for a single vortex of
circulation κ starting at (x, y) = (0, a) with the no-flow-through condition at y = 0.

(c) Now add a constant velocity field U in the x-direction. What is now the veloc-
ity uvort of the vortex pair? Write down an explicit formula for the velocity field
(u(x, y, t), v(x, y, t)) in the upper half-plane due both to the point vortex and to the
uniform external flow U.

(d) Using the ratio α = uvort/U to eliminate uvort, write down the streamwise velocity
u/U on the boundary y = 0 for the flow in (c) and show that it has a maximum
magnitude at the instantaneous x-location of the vortex for all α < 3

4
.
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Problem 7. Suppose that (U, P ) is a steady potential-flow solution of the 3D Euler
equations, so that U =∇φ and P is given by the Bernoulli equation P+ 1

2
U2 = const.

(a) Show that (U·∇)U =∇(1
2
U2).

(b) Represent the potential flow by U = Uts, where ts is the local tangent vector to
its streamlines. Show that

−∇P = ∂s(
1

2
U2)ts + U2κsns,

where s is arclength along the streamlines of U, κs is the local curvature of the
streamline, and ns is the normal vector to the streamline directed toward its local
center of curvature.

(c) Explain how, acting across a thin boundary layer at the wall, the Lighthill source
−n×∇P due to the pressure-gradient of a curved streamline of U may create both
spanwise and streamwise vorticity.

4


