
Homework No.1, 550.794, Due February 10, 2023.

Problem 1. In turbulent flow with bulk velocity U parallel to a straight wall, the
friction velocity uτ is defined as the square-root of the mean viscous stress at the
wall, i.e. by

ν
∂u

∂n

∣∣∣∣
wall

:= u2
τ .

and the viscous wall unit is then defined as

δν := ν/uτ .

(a) Derive the relation between the wall unit and the mean-free-path length `mf :

`mf/δν ∼Ma
√
f

where Ma = U/cs is the bulk Mach number defined in terms of the sound speed cs
and where f is the friction factor.

(b) Using Navier’s law for the slip velocity δus at a solid wall, show that the mean
velocity slip near the wall similarly satisfies

δus/uτ ∼Ma
√
f.

Problem 2. In this problem we shall consider several “theorems” and examples in
the paper of D. Rempfer, “On boundary conditions for incompressible Navier-Stokes
problems,” Appl. Mech. Rev. 59 107–125 (2006).

(a) In his “Theorem 1”, Rempfer claims that the boundary conditions on the pressure
are specified by the requirement that∇·u = 0 on the boundary Γ of the domain Ω. Is
this correct? If not, what condition does set the boundary condition on the pressure?

(b) In his “Theorem 2”, Rempfer claims that the initial-boundary-value problem for
the Navier-Stokes system, his equations (23)-(28), can be solved in a velocity-pressure
formulation (u, p) that uses arbitrary Dirichlet boundary conditions

p(x, t) = pΓ(x, t), x ∈ Γ

in the Poisson equation for the pressure p. However, must the resulting fields (u, p)
satisfy all of the equations (23)-(28), as Remper claims? You may consider the special
case of stick boundary conditions, i.e. uΓ = 0.
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(c) Discuss the example in Rempfer’s section 3.2.5.1 in light of the results of Temam
(1982) on “compatibility conditions” for smooth solutions at time t = 0. If Rempfer’s
example were used as an initial condition at time t = 0 for solving the Navier-Stokes
equation with stick b.c., would there be any inconsistency at times t > 0 between the
pressure calculated with the Neumann b.c. (22) or with the Dirichlet b.c. (53)?

(d) (BONUS) The example in Rempfer’s section 3.2.5.2 considers the Stokes equa-
tion in a bounded domain with non-zero velocities at the boundary, the so-called
“non-homogeneous Stokes problem”. This may be transformed into a homogenous
Stokes problem with a suitable body-force f by using the method of Temam, “Navier-
Stokes Equations” (North-Holland, 1984), Theorem I.2.4 for the steady case. The
resulting homogeneous Stokes problem has a unique solution by the Theorem III.1.1
in Temam (1975). What is the Neumann boundary condition on the pressure in this
solution? Is it the condition assumed by Rempfer in his equation (62)?

Problem 3. Batchelor’s equation for the material evolution of an infinitesimal area
element δA states that

d

dt
δA = (∇·u)δA− (∇u)δA.

One way to derive this result is to note that δA = δ`×δ`′ where δ`, δ`′ are any two
non-parallel, material line elements. Using the fact that both of these infinitesimal
line elements satisfy the equation

d

dt
δ` = (δ`·∇)u,

derive Batchelor’s equation.

Problem 4. (a) If Ω is a bounded domain in R3 which rigidly rotates with angular
velocity vector Ω and if ω is the vorticity field for the Navier-Stokes solution with
stick b.c. in Ω, then show that

1

|Ω|

∫
Ω

ω dV = 2Ω

where |Ω| is the volume of Ω. Note that Ω represents physically a closed container of
fluid spinning on an axis. You may use the fact that ω = 2Ω on the surface ∂Ω that
represents the walls of the container.

(b) Show that Lyman and Panton definitions of the vorticity source are related by

σL = σP − νn̂∂ωn
∂n

+ ν(∇n̂)ω,

where n̂ is the outward-pointing normal to the wall. Show also that n̂·σP = ν(∂ωn/∂n).
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Problem 5. In this problem we consider a simple exact solution which illustrates
the generation of vorticity at an accelerating boundary. We solve the Navier-Stokes
equation for the velocity u = (u, v, w) in the upper half-space R3

+ = {(x, y, z) : y >
0}, with initial condition u0 = 0 at time t = 0 and boundary condition

u = (U, 0, 0) at y = 0

for times t > 0. This problem corresponds to a fluid above an infinite, flat plate which
is impulsively accelerated from rest at times t ≤ 0 to a constant velocity U along the
x-direction at times t > 0.

(a) Verify that the exact solution of the Stokes equation ∂tu = −∇p+ ν4u for this
problem is given by a constant pressure p and u = (u(y, t), 0, 0) with

u(y, t) = Uerfc

(
y√
4νt

)
in terms of the complementary error function erfc(s) = 2√

π

∫∞
s
e−σ

2
dσ. Show that

(u·∇)u = 0 for this velocity, so that (u, p) also solves the Navier-Stokes equation.

(b) Calculate the vorticity ω =∇×u. Show that it takes on its maximum magnitude
at the wall for all times t > 0 and that this maximum at y = 0 is infinite at time t = 0
and decaying monotonically for t > 0. Calculate also the vorticity source density σ
at the wall

σ = n′×ν(∇×ω), y = 0

and show that σ = 0 for all times t > 0. Conclude that all the vorticity is created at
the wall at the instant t = 0 of impulsive acceleration and thereafter is diffused into
the interior by viscosity.

(c) Calculate the circulation
∮
C

u(t)·dx around the rectangular circuit C that runs
in straight lines from (0, 0, 0) → (Lx, 0, 0) → (Lx, Ly, 0) → (0, Ly, 0) → (0, 0, 0) and
show that

lim
Ly→∞

∮
C

u(t)·dx = ULx.

Does the fact that this circulation is independent of time t > 0 agree with your
conclusions in part (b)?

Problem 6. In this problem we consider a simple exact solution which illustrates the
generation of vorticity by a tangential pressure-gradient at a boundary. We consider
plane Poiseuille flow in the channel Ω = {(x, y, z) : |y| < h} with constant pressure
gradient ∇p = (−γ, 0, 0).

(a) Verify that the steady solution of the Navier-Stokes equation for stick boundary
conditions is given by u = (u(y), 0, 0) with

u(y) =
γ

2ν
(h2 − y2)
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and p = p0 − γx for an arbitrary constant p0.

(b) Calculate the vorticity ω = ∇×u and discuss its general features. What is the
direction of vorticity? Where does it take on its maximum magnitude? Calculate
also the vorticity source density σ = n′×ν(∇×ω) at the walls and show that there
is vorticity generation constant in time, in opposite directions at the two walls. What
happens to this vorticity after it is created?

(c) Calculate the circulation
∮
C

u·dx around the rectangular circuit C that runs in
straight lines from (0,−h, 0) → (Lx,−h, 0) → (Lx, h, 0) → (0, h, 0) → (0,−h, 0) and
show that ∮

C

u·dx = 0.

Does this result agree with your conclusions in part (b)?

Problem 7. Suppose that Ω ⊂ R3 is the exterior domain outside a finite body B
with smooth surface ∂B. We assume that the body B has no handles, so that the flow
domain Ω is simply-connected. Given a vorticity distribution ω in Ω, we consider the
“div-curl problem” to find a velocity field u so that ∇·u = 0 and ∇×u = ω in Ω,
and u·n̂ = 0 at ∂Ω.

(a) Show that a solution exists by the recipe of Lighthill (1963):

u = ũ−∇φ

where ũ is given by the Biot-Savart formula

ũ(x) =

∫
Ω

ω(x′)×ρ
4πρ3

dV ′, ρ = x− x′

and φ solves the Neumann problem

4φ = 0 in Ω;
∂φ

∂n
= ũ·n̂ on ∂Ω.

You may assume without proof that the solution φ of the latter problem exists and
is unique up to a constant when Ω is simply-connected.

(b) Assuming that ω is well-localized, e.g. compactly supported, give arguments why
u = O(1/r3) as r → ∞. (It is OK if you cannot give a rigorous proof. We’ll discuss
later some tools such as Helmholtz decomposition which help in this.)

(c) Show that the solution u is unique. Hint: Consider w := u − u′ where u′ is
another possible solution.
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