RANDOM DISAMBIGUATION PATHS

Abstract

We wish to navigate from source s to destination d through a spatial configuration of detections x_i and associated potential risk regions B_i, $i = 1, \cdots, n$. Associated with each detection x_i is a mark ρ_i indicating the probability that entering B_i incurs non-zero risk. In accordance with application we may, upon approaching x_i, disambiguate the risk associated with B_i (that is, determine conclusively if the risk R_i associated with x_i is indeed nonzero) at cost c to the overall traversal time.

A random disambiguation path p is a path-valued random variable whose various values represent different paths taken depending on the results of disambiguations; the actual path depends on the (unobserved at the outset) actual risks R_i. Our goal is to determine the random disambiguation path achieving the minimum expected zero-risk traversal time.

An illustrative application for random disambiguation paths is mine countermeasures path planning—navigating through a field of detections, each of which may or may not be an actual mine, but each of which is marked by the detector with a probability that the detection is indeed a mine. A sensor is available which allows us, when close enough, to determine conclusively whether or not the detection is truly a mine.

(This is joint work with department colleague Donniell E. Fishkind; Lowell Abrams, Department of Mathematics, George Washington University; and Christine D. Piatko, Applied Physics Laboratory, The Johns Hopkins University. The work is supported by the Office of Naval Research and the Defense Advanced Research Projects Agency.)