Department of Mathematical Sciences
The Johns Hopkins University

SEMINAR

Michael Woodroofe
Department of Statistics
University of Michigan

March 29, 2001
304 Whitehead Hall
Preseminar: 3:00 p.m.
Refreshments: 3:30 p.m.
Seminar: 4:00 p.m.

ISOTONIC REGRESSION:
ANOTHER LOOK AT THE CHANGE POINT PROBLEM

Abstract

In simple versions of the change point problem, independent random variables X_k have one (marginal) distribution F_0, say, for $k < \nu$, and another F_1 for $k \geq \nu$, where the change point ν is an unknown parameter and $1 \leq \nu \leq \infty$. Statistical questions include testing for the existence of a change, and estimating the location of ν when it exists. The problem arises in industrial quality assessment but also more generally—for example, in assessing changes in weather patterns and disease rates. In this talk, I will explore a modified version of the change point problem in which the abrupt change is replaced by a monotonic, but otherwise arbitrary, sequence of changes. In the simplest case, suppose that $X_k = \mu_k + \epsilon_k$, where μ_1, \ldots, μ_n are the unknown parameters and $\epsilon_1, \ldots, \epsilon_n$ are independent normal random variables with a common variance σ^2. Suppose that $\mu_1 \leq \cdots \leq \mu_n$ and consider testing the hypothesis $H_0 : \mu_1 = \cdots = \mu_n$. This is the same null hypothesis encountered in the change point problem, but the alternative is different. A penalized likelihood ratio test of H_0 is developed and its asymptotic distribution is obtained. The asymptotic distribution is obtained under the more general assumption that $\epsilon_1, \ldots, \epsilon_n$ are part of a zero-mean, square-integrable, stationary ergodic process that exhibits suitable short-range dependence. The test is illustrated by rainfall data from the Tucuman Region of Argentina.