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Abstract

We show that symmetry, represented by a graph’s automorphism group, can be used to greatly reduce
the computational work for the substitution method. This allows application of the substitution method
over larger regions of the problem lattices, resulting in tighter bounds on the percolation threshold pc.
We demonstrate the symmetry reduction technique using bond percolation on the (3, 122) lattice, where
we improve the bounds on pc from (0.738598, 0.744900) to (0.739399, 0.741757), a reduction of more
than 62% in width, from 0.006302 to 0.002358.

1 Introduction
Percolation processes were introduced in 1957 by Broadbent and Hammersley [3] as models for the flow
of fluid through a random medium. A Bernoulli bond percolation model is comprised of an infinite
lattice graph G, with each bond (that is, edge) independently designated as open with probability p,
0 < p < 1, and closed otherwise. The open cluster containing a specific vertex v ∈ G, denoted Cv ,
is the set of all vertices that can be reached from v through a path of open bonds. Let P G

p denote the
probability measure corresponding to probability p. An important quantity is the percolation probability
θGv (p) = P G

p (|Cv | = ∞). The critical probability, also called the percolation threshold, of the lattice is
then defined by pc(G) = inf{p : θGv (p) > 0}, which is independent of the vertex v if G is connected.

One goal of percolation theory is to understand the dependence of the critical probability on the
properties of a lattice graph, and to find accurate approximation formulas based on these properties. To
develop such approximations we first need to know the critical probabilities for a variety of lattices. This
has proven to be a difficult problem. After almost 40 years of effort, exact critical probability values are
known for only a handful of lattices, and the published approximations for other lattices are either loose
bounds or not rigorously obtained (for example, from simulations).

The substitution method was introduced by Wierman [15] as a technique for rigorously determin-
ing bounds on pc(G) for many two-dimensional bond and site percolation models. Wierman describes
several recent results obtained using the substitution method in [16], [17], and [18] .

Unfortunately, there are computational difficulties when applying the method over large portions
of the lattice, so the bounds obtained are often not tight enough to either reject or strongly support
conjectured critical probability values, or to be competitive with simulation estimates. In this paper we
introduce a computational technique that allows us to apply the substitution method to a larger subgraph
of the lattice, thus obtaining tighter bounds on the critical probability. The basis of the improvement
lies in exploiting symmetry of the finite subgraph G used as the substitution region. This symmetry is
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encapsulated in the automorphism group of G. When we apply the automorphism group action to the
partially ordered set (poset) that describes the connectivity of the subgraph, we reduce the original poset
to a much smaller poset. The substitution method calls for finding the extremal solutions for polynomial
equations derived from up-sets of the original, large, partially ordered set. We will show that we obtain
the same solutions by searching the symmetry reduced poset. This makes the algorithm tractable for
larger regions of the unsolved lattice, so that we can obtain tighter bounds on pc.

The improvement due to the results of this paper is beyond that achievable by improvements in
computing power alone. In the illustrative example of Section 5, there is six-fold symmetry, which
reduces the size of the poset from 203 to 37 elements. The number of up-sets is reduced from greater
than 1027 to 95,708. Thus the reduction of the size of the poset by a factor of around 6 reduces the
number of up-sets by roughly the sixth root.

Note that symmetry was used in a less systematic fashion in Wierman [17] and [19]. Due to the
results of this paper, the detailed justifications in Section 4 of [17] and Section 4 of [19] are no longer
necessary.

This paper is organized as follows. In Section 2 we review the substitution method, its theoretical
foundation, and the definitions and notation used throughout this paper. In Section 3 we show how the
automorphism group of the substitution region subgraph can be used to reduce the partition lattice to
the much smaller class lattice. Section 4 contains our main theoretical result, where we show that the
extremal up-set equation solutions on the class lattice equal the extremal solutions on the partition lattice.
Due to the reduced size of the lattice these solutions can be found with much less work.

In Section 5 we use the improved algorithm to calculate bounds on pc for the (3, 122) lattice. Our
calculation tightens the rigorously obtained bounds (see Wierman [18]) from (0.738598, 0.744900) to
(0.739399, 0.741757). There is a longstanding conjecture by Tsallis [13] that the exact percolation
threshold for this lattice is .739830 . . .. While our rigorous bounds do not reject this value, the trend
of lower bounds suggests that Tsallis’s conjecture is too low and may be disproved when we apply the
substitution method to a sufficiently large region.

Work by other researchers also casts doubt on Tsallis’s conjecture. Tsallis used the same technique to
calculate conjectured thresholds for both the (3, 122) and Kagomé lattices (.739830 . . . and 0.522372 . . .,
respectively). Using the hull-gradient method, Ziff and Suding [20] find a pc value of 0.5244053 ±
0.0000003 for the Kagomé lattice. Jensen et. al. [4] provide further evidence (not proof) that the
value conjectured by Tsallis is too low for the Kagomé lattice. Thus there is accumulating evidence that
Tsallis’s technique produces pc values that are too low.

Finally, in an appendix we show how to calculate the number of elements in the symmetry reduced
poset. This calculation is needed to verify results in the computer program, as well as being an interesting
problem in its own right.

2 The Substitution Method
The substitution method was introduced by Wierman [15] to find bounds for the critical probabilities
of bond percolation models in two dimensions. It allows one to derive information by comparing the
percolative behavior of two different lattices at different parameter values. Typically the unsolved lattice
is compared to a reference lattice with exactly known critical probability, in order to gain information
about the unsolved case.

Consider an infinite lattice G that may be decomposed into a union of isomorphic, edge-disjoint,
finite, connected subgraphs in such a way that every edge is in a subgraph and every vertex is in at least
one subgraph. Vertices that are in more than one subgraph are called boundary vertices. A path on the
lattice may enter or leave the subgraph in the decomposition only through its boundary vertices.

Now consider a fixed subgraph G in this decomposition. Denote its boundary vertices by A, B, C, . . ..
Any designation of edges as open or closed on G determines a partition of the boundary vertices into
clusters of vertices that are connected by open edges. Each such boundary partition, or simply partition,
may be denoted by a sequence of vertices separated by vertical bars, where vertices are in distinct open
clusters if and only if they are separated by a vertical bar. For example, if the boundary vertex set consists
of A, B, and C then A|BC indicates that B and C are in the same open cluster, but A is in a different
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cluster.
Given the boundary vertices, we use B to represent the set of all partitions of the set A, B, C, . . ..

A partition of A, B, C, . . . is in B regardless of whether or not there is a collection of open and closed
edges in G that give rise that partition.

A partition π is a refinement of partition σ, denoted π ≤ σ, if every cluster of π is contained entirely
in a cluster of σ. The set of boundary partitions with refinement form a partially ordered set, called the
partition lattice P . (It is a lattice because all pairs of elements have a least upper bound and a greatest
lower bound). σ is said to cover π if π < σ and there is no element ξ ∈ P satisfying π < ξ < σ. We
write Pn to indicate the partition lattice with n boundary vertices.

We will use some standard terminology from the literature on partially ordered sets (see Stanley
[9]). The maximal element, 1̂, is the partition with all boundary vertices connected, while the minimal
element, 0̂, has each boundary vertex in a distinct cluster. A chain is a subposet of P in which any two
elements are comparable. In contrast, an antichain is a subposet of P in which any two elements are
incomparable. The length of a chain `(C) is defined `(C) = |C| − 1. The rank of Pn is the maximum
length of a chain in Pn, which is easily seen to be n − 1. Every maximal length chain of Pn has the
same length, so Pn is said to be graded of rank n − 1. In this case there is a unique rank function
ρ : P → {0, 1, . . . , n− 1} such that ρ(x) = 0 if x is the minimal element of Pn, and ρ(y) = ρ(x) + 1 if
y covers x in Pn. If ρ(x) = i then we say x has rank i. For the partition lattice Pn an element of rank i
has n − i clusters of boundary vertices. Two posets P and Q are said to be isomorphic if there exists an
order-preserving bijection f : P → Q whose inverse is order-preserving, that is:

x ≤ y in P ⇔ f(x) ≤ f(y) in Q.

The Bernoulli bond percolation model on G with parameter p assigns probability to each assignment
of open or closed edges of G, which is called a bond configuration. The bond configuration can be
identified with a subgraph of G by deleting edges that are closed in the configuration. If κ represents
a bond configuration, then V (κ) = V (G) and E(κ) ⊆ E(G), where V (G) and E(G) are the standard
notation for the vertex set and edge set of an undirected graph. We write 2E(G) for the set of all bond
configurations on G.

For the Bernoulli bond percolation model the probability polynomial for bond configuration κ is

P G
κ (p) = p|E(κ)|(1 − p)|E(G)|−|E(κ)|.

Probability measures of individual bond configurations are at too fine a level of detail to be useful. More
often we are interested in the probability of sets of bond configurations. Since bond configurations are
mutually exclusive events, the probability polynomial for a set S ⊆ 2E(G) is the sum of the probabilities
of the bond configurations in S. Thus we define

P G
S (p) =

∑

κ∈S

P G
κ (p) =

∑

κ∈S

p|E(κ)|(1 − p)|E(G)|−|E(κ)|

to represent the probability polynomial for S.
An important set probability polynomial is the boundary partition probability polynomial. Let Π :

2E(G) → B be the mapping from a bond configuration to its boundary partition. Then the boundary
partition probability polynomial, or more simply the partition polynomial, for the boundary partition π
is

P G
π (p) =

∑

κ:Π(κ)=π

P G
κ (p).

We often write π-polynomial to refer to a generic boundary partition probability polynomial.
Suppose that another lattice H may be decomposed into subgraphs with the same number of bound-

ary vertices, corresponding to the substitution of a subgraph for each subgraph in the decomposition
of G. Consider the subgraph H in H substituted for G in G, and identify the boundary vertices with
A, B, C, . . .. As above, a probability measure P H

π (q) on the partition lattice of partitions of A, B, C, . . .
is determined from the percolation model on H with parameter q.

In applying the substitution method to percolation models, the relevant comparison of two probability
measures P G

• (p) and P H
• (q) on the partition lattice is stochastic ordering. An up-set of a partially
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ordered set P = (S,≤) is a subset U ⊆ S such that if g ≥ f and f ∈ U then g ∈ U (note that the empty
set is an up-set). If P and Q are two probability measures on P then we say P is stochastically smaller
than Q, denoted P ≤s Q, if P [U ] ≤ Q[U ] for every up-set U .

The key fact is that for probability measures on a finite partially ordered set, stochastic ordering is
equivalent to the existence of a coupling. This is a consequence of Strassen’s Theorem [11] (or see
Lindvall [5]). This means that if P G

• (p) ≤s P H
• (q), there exist jointly distributed random partitions

X and Y such that X is a refinement of Y with probability one, X has marginal distribution P G(p)
and Y has marginal distribution P H(q). Note that X represents a realization of the percolation model
on G with parameter p and Y represents a realization of the percolation model on H with parameter q
such that any pair of boundary vertices that are connected by an open path in G according to X are also
connected by an open path in H according to Y .

Combining such couplings for all copies of G in the infinite graph G we obtain coupled realizations
of the bond percolation models on G and H such that any pair of boundary vertices that are connected by
an open path in G are also connected by an open path in H. Thus the percolation probability values are
ordered: θG(p) ≤ θH(q). If H is a reference lattice, and q0 = pc(H), we may determine upper and lower
bounds for pc(G) by finding pu = min{p : P G(p) ≥s P H(q0)} and pl = max{p : P G(p) ≤s P H(q0)},
respectively.

This characterization of pu and pl may be reinterpreted as follows. We define the up-set probability
polynomial for G (and similarly for H), by

P G
U (p) =

∑

π∈U

P G
π (p) =

∑

π∈U

∑

{κ:Π(κ)=π}

P G
κ (p),

where U is an up-set. An equivalent means of obtaining pl and pu is to solve for the extremal solutions
in p to the up-set equations P G

U (p) = P H
U (q0), over all up-sets U . Note that P G

U (p) is a polynomial and
P H

U (q0) is a real number, so the problem reduces to finding roots of univariate polynomials.

2.1 Properties of the Probability Polynomials
We establish some properties of the probability polynomials that will be needed in this paper.

P G
π (p) is the (possibly empty) sum of terms of the form pk(1 − p)n−k. If for any p ∈ (0, 1) one

of these terms is greater than zero, then it is greater than zero for all p ∈ (0, 1), and so is the sum.
Therefore:

Fact 1. For any partition π, P G
π (p) is either identically 0 or P G

π (p) > 0 for all p ∈ (0, 1).

Up-set polynomials are formed by summing the π-polynomials of an up-set. Let P G
U (p) be an up-set

polynomial. Except for the up-set polynomial for the up-set generated by the 0̂ partition, P G
U (0) = 0,

P G
U (1) = 1, and P G

U (p) ≥ 0 ∀p ∈ [0, 1]. For the up-set generated by the 0̂ partition P G
U (p) = 1 ∀p ∈

[0, 1].
A standard coupling argument shows that P G

U (p) is a nondecreasing function of p, but we need a
slightly stronger result. P G

U (p) is a polynomial onto [0, 1]. From the Intermediate Value Theorem, we
infer that a solution to the up-set equation exists, but need not be unique. Let us assume that there are
two solutions to the up-set equation, a and b, such that a < b and P G

U (a) = P G
U (b) = y. Since P G

U (p) is
nondecreasing, it must be constant for p ∈ [a, b]. The only polynomial constant on an interval is constant
everywhere. But an up-set polynomial is onto [0, 1], so it is not a constant. Thus we see that

Fact 2. Except for the empty up-set and the up-set generated by the disconnected partition, the solution
to the up-set equation P G

U (p) = y for y ∈ [0, 1] exists and is unique.

3 Group Actions
The infinite lattices analyzed using the substitution method are usually derived from tilings of the plane
by polygons. In such cases the subgraph employed in the substitution method usually exhibits consid-
erable symmetry. In this section we exploit this symmetry, in the form of the subgraph’s automorphism
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group Aut(G), to reduce the partition lattice to a much smaller partially ordered set that we call the class
poset (or more precisely, the class lattice).

3.1 The Automorphism Group
An automorphism of a graph G is a permutation of the vertices f : V (G) → V (G) with the property
that {u, v} is an edge of G if and only if {f(u), f(v)} is an edge of G. In other words, if vertices u and
v are adjacent before applying f , then their images are adjacent after applying f .

A well known fact is that the set of automorphisms with composition form a group (see Biggs [2]).
Thus every permutation f ∈ Aut(G) has an inverse, and Aut(G) is closed under composition. Aut(G)
is non-empty since the identity permutation satisfies the definition for all graphs.

We establish two facts that will be used in later development. Applying f to a bond configuration
κ relabels the vertices, which doesn’t change the number of open and closed bonds. Therefore the
probability polynomial must remain unchanged. Stating this formally:

Fact 3. If κ and f(κ) are two bond configurations, with f ∈ Aut(G), then P G
κ (p) = P G

f(κ)(p), ∀p ∈
[0, 1].

An automorphism f also relates boundary partitions. f applied to a bond configuration κ1 is a
permutation of the vertices of the graph, resulting in a bond configuration κ2. Similarly, applying f to
the vertex labels in the boundary partition derived from κ1 (that is, π1) results in the boundary partition
for κ2 (that is, π2). Thus:

Fact 4. Given bond configurations κ1 and κ2 such that κ2 = f(κ1), with f ∈ Aut(G). Let π1 = Π(κ1)
and π2 = Π(κ2) be the corresponding boundary partitions. Then π2 = f(π1).

When we apply group actions as part of the substitution method, we may not be able to use Aut(G)
itself. The group we use must satisfy two constraints. First, since we are comparing percolation on
two graphs, the unsolved graph G and the reference graph H , the group elements must be valid auto-
morphisms for both graphs. More precisely, the group we use must be a subgroup of both Aut(G) and
Aut(H). The greatest computational benefit is obtained if we can use Aut(G) ∩ Aut(H). The second
constraint is that the automorphism group map boundary vertices, and only boundary vertices, to other
boundary vertices. For the purposes of the substitution method our interest lies in connected clusters of
boundary vertices, so we need to exclude group actions that move an internal vertex to the boundary (or
vice versa).

3.2 Equivalence Classes of Boundary Partitions

Figure 1: A Subgraph of the Kagomé Lattice

Our results are based on the fact that the actions of a group G (we use a bold typeface to distinguish
between groups and graphs) on G induce an equivalence relation on the set of bond configurations, and
then, by a simple extension, on boundary partitions. The group G will always be Aut(G) or one of its
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Figure 2: Bond configurations (bold edges) related by reflection through the AD axis

subgroups. In most applications of the substitution method, G is planar with rotational and reflective
symmetry. Thus G typically is a subgroup of a dihedral group.

Example 1. A portion of the infinite Kagomé lattice is shown in Figure 1. The substitution method is
applied to a subgraph of the lattice, which we show with bold edges. Bond configurations are subsets of
the edges of the subgraph, two instances of which are shown in Figure 2. The automorphism group for the
subgraph is easily seen to be isomorphic to the dihedral group D6, which is generated by rotations of π/3
radians and reflections through an axis connecting opposite vertices. Thus the two bond configurations
in Figure 2 are members of the same equivalence class.

Equivalent graphs under group action are said to be G-equivalent. G-equivalent classes are well
known to satisfy the conditions of an equivalence relation (for example, see Stanley [10]).

However, our real interest is in forming equivalence classes of boundary partitions, not bond config-
urations. We use the mapping from a bond configuration to a boundary partition to extend G-equivalence
to boundary partitions:

Definition 1. Boundary partitions π1 and π2 are G-equivalent, denoted π1 ∼ π2, if there exist bond
configurations κ1 and κ2 and f ∈ G, with Π(κ1) = π1, Π(κ2) = π2, such that κ1 = f(κ2).

We establish some basic properties following from Definition 1.

Lemma 1. Given π1 ∼ π2, let K1 = {κ : Π(κ) = π1}, K2 = {κ : Π(κ) = π2}. There is a one to one
correspondence between K1 and K2.

Proof. Since π1 ∼ π2 there is some f ∈ G such that π2 = f(π1). Select any κ1 ∈ K1. According
to Fact 4, κ1 maps to the unique element κ2 = f(κ1) in K2. Moreover, from the group cancellation
property, κ2 maps into the unique element κ1 = f−1(κ2) in K1. Thus there is a bijection between K1

to K2.

The following lemma is a major reason for the usefulness of these equivalence classes:

Lemma 2. If π1 ∼ π2 then P G
π1

(p) = P G
π2

(p).

Proof. By definition
P G

π1
(p) =

∑

κ∈K1

p|E(κ)|(1 − p)|E(G)|−|E(κ)|

and
P G

π2
(p) =

∑

κ∈K2

p|E(κ)|(1 − p)|E(G)|−|E(κ)|.

From Lemma 1 there is a one to one correspondence between the sets K1 and K2. The corresponding
elements of the two sets are related by automorphisms, so by Fact 3 they have the same probability
polynomial. Therefore the two sums are equal.

Another useful fact is that:
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Fact 5. If π1 ∼ π2, then π1 and π2 have the same number of clusters.

Proof. The number of connected clusters is unchanged by an automorphism action.

The following is a special case of a well known result. The proof is straightforward; for example, see
Liu’s [6] Theorem 5-1.

Lemma 3. The G-equivalence relation on the set of boundary partitions is an equivalence relation.

3.3 The Class Lattice
The sets of G-equivalent boundary partitions are the major focus of this paper, so we give them a name:

Definition 2. A boundary partition class, or simply a class, is a maximal set of G-equivalent boundary
partitions.

If π′ is a representative member of class C, then C = {π ∈ B : π ∼ π′}.
We will construct a partially ordered set of classes, so we need a definition of refinement that applies

to classes:

Definition 3. Let C1 and C2 be equivalence classes of partitions, then class C1 is a refinement of C2,
denoted C1 � C2, if for some π1 ∈ C1 there exists π2 ∈ C2 such that π1 ≤ π2.

The class lattice, denoted P/G, is the partially ordered set obtained from the partition lattice by
lumping G-equivalent partitions into equivalence classes. We also call P/G the symmetry reduced lat-
tice. We verify that:

Lemma 4. P/G with refinement is a partially ordered set.

Proof. We show the three poset conditions are met for P/G. Let C1, C2, and C3 be boundary partition
classes.

• Reflexive (C � C): π ≤ π for all π ∈ C, so C � C for all C ∈ P/G.

• Antisymmetric (C1 � C2 and C2 � C1 imply C1 = C2): Assume that π1 ≤ π2 and π2 ≤ π′
1, where

π1 and π′
1 ∈ C1, π2 ∈ C2. From Fact 5, partitions π1 and π′

1 have the same number of clusters.
Furthermore π2 must have the same number of clusters as π1 and π′

1. But π1 ≤ π2 where both
have the same number of clusters can occur only if π1 = π2.

• Transitive (C1 � C2 and C2 � C3 imply C1 � C3): By definition, for some π1 ∈ C1 there exists
π2 ∈ C2 such that π1 ≤ π2. Likewise, for some π′

2 ∈ C2 there exists π′
3 ∈ C3 such that π′

2 ≤ π′
3.

Since π2 and π′
2 are in C2 they are G-equivalent, so there exists an automorphism f where π2 =

f(π′
2). Then there exists an element π3 = f(π′

3) in C3, with the property that π2 ≤ π3. From
transitivity of ≤ for boundary partitions, π1 ≤ π3. Thus π1 ∈ C1 is a refinement of π3 ∈ C3,
showing C1 � C3.

Additionally, the class poset is a lattice. The class lattice is graded, of the same rank as the partition
lattice from which it derives.

4 Finding the Extremal Up-set Equation Solutions
We have introduced symmetry reduction because, as we now show, it allows us to perform the substitu-
tion method calculation on a poset that is much smaller than Pn. Recall that the substitution method calls
for finding the extremal solutions to the up-set equations on the partition lattice. We show in Theorem
1 that these extremal solutions are the same as those found on the symmetry reduced lattice P/G. The
computational savings due to searching the smaller poset can be considerable, often making feasible a
calculation that was previously out of reach.
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We begin by introducing some notation and terminology to simplify exposition. In this section G
and H are finite graphs with equal numbers of boundary vertices, P G

• (p) and P H
• (p) are the associated

probability polynomials on the poset P of partitions of boundary vertices, and G is the largest subgroup
of both Aut(G) and Aut(H) satisfying the constraints previously described. We write p∗

U for the solution
to the up-set equation for U , that is, P G

U (p∗U ) = P H
U (pc), where pc is the known critical probability for

the lattice H.
A class C is said to be complete in up-set U if C ⊆ U , incomplete if C is not complete and C ∩U 6= ∅.

A set of partitions S ⊆ B is said to be possible if there is some p ∈ (0, 1) such that P G
S (p) > 0 or

P H
S (p) > 0. If S is not possible then it is impossible. Note that by Fact 1, if S is possible for any value

of p, then it is possible for all p ∈ (0, 1). Only possible sets of partitions affect the solution to the up-set
equations. If P G

U (p) = P H
U (pc), and S is impossible, then P G

U∪S(p) = P H
U∪S(pc).

The following lemma demonstrates that under the certain conditions a monotonicity result holds for
a related set of up-set equation solutions. This result is crucial to proving Theorem 1.

Lemma 5. Let U be a non-trivial up-set of P , and S a subset of U such that U −S is also an up-set. Let
S′ be the image of S under a group action, that is, there exists f ∈ G such that S ′ = {x : x = f(y), y ∈
S}, such that U ∪ S′ is an up-set, and U ∩ S ′ = ∅.

Then either

p∗U∪S′ < p∗U < p∗U−S

p∗U∪S′ = p∗U = p∗U−S

or

p∗U∪S′ > p∗U > p∗U−S

Proof. Note that we consider a non-trivial up-set to be any non-empty up-set, except that generated by
the 0̂ partition. Since the up-set generated by the 0̂ partition contains all poset elements, its probability
polynomial is identically equal to 1, and the up-set equation has no unique solution.

The elements of S and S ′ are in one to one correspondence, and corresponding partitions are mem-
bers of the same class. We conclude from Lemma 2 that S and S ′ have the same probability polynomials,
which we denote P G

S (p) and P H
S (p) (respectively P G

S′(p) and P H
S′ (p)). The up-set equations for U ∪ S ′,

U , and U − S, respectively, are then

P G
U (p) + P G

S (p) = P H
U (pc) + P H

S (pc)

P G
U (p) = P H

U (pc)

P G
U (p) − P G

S (p) = P H
U (pc) − P H

S (pc).

By subtraction we define

g1(p) = P G
U (p) + P G

S (p) −P H
U (pc) − P H

S (pc),

g2(p) = P G
U (p) −P H

U (pc),

g3(p) = P G
U (p) − P G

S (p) −P H
U (pc) + P H

S (pc),

and
k(p) = P G

S (p) − P H
S (pc),

then rewrite the up-set equations as

g1(p) = g2(p) + k(p) = 0 (1)
g2(p) = 0 (2)
g3(p) = g2(p) − k(p) = 0. (3)

Since each polynomial gj(p) is an up-set polynomial plus a constant, it is still non-decreasing. We know
from Fact 2 that each up-set equation has a unique solution in [0, 1]. Let p∗

1, p∗2, and p∗3 represent the
solutions to Equations 1 – 3, respectively. To prove the Lemma we need to show that either p∗

3 < p∗2 <
p∗1, p∗3 = p∗2 = p∗1, or p∗3 > p∗2 > p∗1.
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In fact the ordering is determined by the sign of k(p∗
2). If k(p∗2) > 0 the polynomial values are

ordered: g1(p
∗
2) > g2(p

∗
2) = 0 > g3(p

∗
2). From the Intermediate Value Theorem and monotonicity we

conclude that p∗1 < p∗2 < p∗3. If k(p∗2) < 0, the opposite occurs: p∗3 < p∗2 < p∗1. The last possibility is
k(p∗2) = 0, in which case all three equations have the same solution (that is, p∗

3 = p∗2 = p∗1). This occurs
if the sets S and S′ are impossible, or if P G

S (p∗2) = P H
S (pc).

U f(U)

V = 
U ∩ f(U)

S S' = f(S)

π'π
f

Figure 3: Sets used in the proof of Theorem 1. π is a member of an incomplete class in U , π ′ is a member
of the same class that is not contained in U .

Theorem 1 is the formal statement of the fact that the extremal solutions to up-set equations on the
class poset equal the extremal solutions on the partition poset:

Theorem 1. There exist up-sets UM and Um, which are unions of classes, such that

p∗UM
= max {p∗U : U is an up-set of P}

and
p∗Um

= min {p∗U : U is an up-set of P}.

Proof. We only prove the result for p∗
UM

, since a similar argument suffices for the minimum solution.
The proof is by contradiction. Suppose that the maximum solution on the partition lattice, p∗, is

not achieved by any up-set that consists entirely of complete classes. Let U be a maximal up-set of P ,
not necessarily unique, satisfying p∗

U = p∗, containing at least one incomplete class. Let C denote an
incomplete class in U of highest rank (that is, with the shortest length chain from C to the 1̂ element).

Choose a partition π from U ∩ C, and π′ a partition from C − U . Since C is an equivalence class
induced by G there is a group element f such that π′ = f(π). Form the sets f(U) = {x ∈ P : x =
f(y), y ∈ U}, V = U ∩ f(U), S = U −V , and S ′ = f(S). We illustrate the relationship between these
sets in Figure 3. Then it is easily seen that:

• f(U) = V ∪ S′ is an up-set. V ∪ S′ is isomorphic to the up-set U = V ∪ S, where the group
element f is an order-preserving bijection between the two sets.

• U ∪ S′ is an up-set, since U ∪ S ′ = U ∪ f(U), and the union of two up-sets is an up-set.

• The intersection of two up-sets is an up-set, so V = U ∩ f(U) is an up-set.

• U ∩ S′ = ∅ by construction.

The conditions needed to apply Lemma 5 to U , S, and S ′ are satisfied. Therefore the up-set equation
solutions are ordered in one of three ways:

p∗U∪S′ < p∗U < p∗U−S (4)

p∗U−S = p∗U = p∗U∪S′ (5)

9



or

p∗U−S > p∗U > p∗U∪S′ . (6)

Equation 4 and Equation 6 cannot hold, since, by assumption, there is no up-set with solution greater
than p∗U . Therefore we are left with Equation 5. As noted above, U ∪ S ′ is an up-set. Thus we can
expand U to obtain a larger up-set that still attains p∗. However, we assumed that U was maximal, so
that we have reached a contradiction.

We conclude, therefore, that the maximal up-set attaining the solution p∗ consists of complete classes
of partitions.

Knowing that we can use symmetry reduction to find the extremal solutions with reduced compu-
tational cost, we want to estimate the improvement. The improvement is based on the reduction in the
number of up-set equations that need to be solved. We know of no closed form result that provides this
count, either exactly or asymptotically. However, in Appendix A we describe a computation to obtain
the number of elements, and the number of elements by rank, for the symmetry reduced poset.

These values can then be used to bound the number of up-sets in the class lattice. There is a one to
one correspondence between up-sets and antichains. Since a rank of a poset forms an antichain, the size
of the power set of the largest rank is a lower bound for the number of up-set equations. Similarly, the
number of up-set equations is bounded above by the size of the power set of all elements in the class
lattice. In practice these bounds are very loose.

5 Bounds on pc for the (3, 122) Lattice

Figure 4: The (3, 122) Lattice

In this section we show how the theory described in this paper is used to calculate improved bounds
on pc for a particular lattice. Our example is the “extended Kagomé” or “star” lattice, shown in Figure 4.
It is one of the 11 Archimedean lattices, that is, vertex transitive tilings of the plane by regular polygons.
Since the lattice is vertex transitive it can be characterized by listing the number of sides in each n-gon
adjacent to any given vertex. In this example each vertex is adjacent to a triangle and 2 12-gons. Thus
this lattice is also known as the (3, 122) lattice .

There is a long standing conjecture by Tsallis [13] that the exact critical probability for the (3, 122)
lattice is .739830 . . .. Wierman [18] has previously established rigorous bounds of (0.738598, 0.744900)
using the substitution method.

Figure 5: The (3, 122) Substitution Region: Unsolved vs. Solved Subgraph
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To apply the substitution method we need to decompose the (3, 122) lattice into isomorphic, edge-
disjoint subgraphs, and substitute alternative subgraphs in order to obtain a lattice which is exactly
solved. Our substitution region is the subgraph shown on the left in Figure 5. It consists of a single
12-gon, the 6 triangles on the corners, and 6 half edges. The half edges are needed so that the lattice
decomposition is edge-disjoint. If the full edges are open with probability p then the half edges are open
with probability

√
p. When we substitute a hexagon plus six half-edges for this subgraph, as shown on the

right in Figure 5, we obtain the hexagonal lattice, which has known critical probability 1 − 2 sin(π/18)
(Wierman [14]).

Both substitution regions have 6 boundary vertices, so the relevant partition lattice is P6. The cardi-
nality of P6 is the 6th Bell number, 203. It is easily shown that the largest rank of P6 has 90 elements.
While the number of up-sets is unknown, the cardinality of the power set of the largest rank, that is,
290 ≈ 1027 is a lower bound. Thus searching the entire lattice to determine the extremal solutions would
require solving at least 1027 up-set equations. This is not practical.

� �

� � � � � � � � � � �

� � � � � � 	 � � 	 � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � 	 � �

� �

Figure 6: Hasse diagram for the class lattice P6/D6. Symmetry reduction has reduced the poset from 203
elements to the 37 shown here, and from at least 1027 up-sets to 95,708 up-sets.

Due to their symmetry, the appropriate automorphism group for both these graphs is the dihedral
group D6. D6 also satisfies the constraint that boundary vertices map only to boundary vertices. When
we apply the D6 group actions to P6 we obtain a class lattice containing 37 elements (see Appendix
A). The Hasse diagram for the class lattice is shown in Figure 6. While the partition lattice had greater
than 1027 up-set equations to solve, we find that the class lattice has precisely 95,708 up-set equations to
solve. This is a small enough number that finding the extremal solutions by solving all up-set equations
is easily accomplished by a computer.

To summarize, the complete computational procedure is the following:
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1. Determine the automorphism groups for G and H , satisfying the constraints. In this example, the
appropriate group is clearly D6. If there is any doubt, the program nauty (see McKay [7]) can
be used.

2. Using the automorphism group, define the class lattice by classifying the boundary partitions and
determining the inclusion relationships. We have developed a computer program called classify
to perform this calculation.

3. Enumerate the up-sets for P/G calculated in the step 2. We used the algorithm from Squires [8]
that performs a Hamiltonian walk on the set of up-sets.

4. Calculate the π-polynomials for all equivalence classes of boundary vertices.
5. Search for the extremal up-set equation solutions among the set of all up-sets. Using Newton’s

method on a PowerPC processor, this only took about 20 minutes. We note that this problem is
especially favorable for Newton’s method. A solution is guaranteed to exist in (0, 1) and it is
unique in that interval. We use the mid-point of Wierman’s [18] previous bounds as the starting
point for the Newton iteration, insuring that the starting point is quite close to the up-set equation
solution.

The minimum and maximum solutions, 0.739399 and 0.741757, correspond to the up-sets ABCDEF
and everything but A|B|C|D|E|F . Note that the interval between our bounds includes Tsallis’s conjec-
tured value 0.739830 . . ., although the lower bound comes close to excluding it.

A Enumerating the Class Poset
In this appendix we describe a method for calculating the number of elements in the symmetry reduced
poset. We have found this calculation useful for estimating the work required to solve specific problems
and for checking computer results. In the interests of brevity we won’t review the theory underlying
these techniques. The reader who is unfamiliar with the theory can refer to Liu [6] or Beckenbach [1]
for a complete discussion.

We introduce a different representation for a boundary partition, called the class vector. The class
vector assigns an integer to each set of connected boundary vertices. For a partition of A, B, . . . , F the
class vector is of length 6, and for each i = 1, . . . , 6 the ith entry is the class (set of connected vertices)
to which the ith vertex belongs. For example, the class vector for boundary partition AB|CD|EF is
112233. The class vector representation reveals that partitioning the boundary vertices can be seen as a
coloring problem, with each “color” representing a cluster of connected boundary vertices. Note that the
actual color assigned to a boundary vertex does not matter, only the set of partitions sharing the same
color. That is, partition 112233 is considered equivalent to 221133 and 223311.

Counting colorings of a set under group action is a classic application of Pólya’s Enumeration The-
orem. However Pólya’s Theorem doesn’t go quite far enough. It gives us a method to count all distinct
colorings. We need a method that also incorporates the notion that “distinct clusters are colored differ-
ently, but we don’t care what the color is.”

De Bruijn’s Theorem is a generalization of Pólya’s Theorem that allows us to count equivalence
classes in precisely this way. Two groups are employed. The first group, G, represents the geomet-
ric symmetries of the underlying graph; while the second, H , represents a notion of what constitute
equivalent colorings.

In order to apply de Bruijn’s Theorem we need to know the cycle index polynomial for each group.
The permutations that comprise G and H can be categorized by the number of cyclic permutations of
each length. If permutation π has b1 cycles of length 1, b2 of length 2, . . ., bk cycles of length k, then we
use the monomial xb1

1 xb2
2 · · ·xbk

k to to represent the number of cycles of each length in π. This is called
the cycle structure representation of π. Given a group G, the cycle index polynomial ZG is the sum of
the cycle structure representations of the permutations of G, divided by the number of permutations in
G:

ZG =
1

|G|
∑

π∈G

xb1
1 xb2

2 · · ·xbk

k .

Formally de Bruijn’s Theorem states:
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Theorem 2. X is a set, C a set of colors, ZG and ZH are the cycle index polynomials for G and H .
Then the number of equivalence classes of functions from X to C is the value of the expression

ZG

(

∂

∂z1
,

∂

∂z2
,

∂

∂z3
, . . .

)

× ZH

[

ez1+z2+z3+···, e2(z1+z2+z3+··· ), e3(z1+z2+z3+··· ), . . .
]

∣

∣

∣

∣

z1=z2=···=0

.

Liu [6] provides a proof of this theorem.
We illustrate its applicability to our problem with two examples.

Example 2. We wish to count the elements ofP6 reduced by hexagonal symmetry. Hexagonal symmetry
suggests that we use the dihedral group D6 for G in de Bruijn’s Theorem. The notion that the actual color
assignments don’t matter is equivalent to applying the symmetric group to the colors. Any permutation
of the colors results in an equivalent “coloring”. Therefore we need the cycle index polynomials for D6

and for the symmetric group S6. These are

ZD6
(z1, z2, z3, z6) =

1

12
(z6

1 + 4z3
2 + 2z2

3 + 3z2
1z

2
2 + 2z6)

and

ZS6
(z1, z2, z3, z4, z5, z6) =

1

720
(z6

1 + 15z4
1z2 + 40z3

1z3 + 90z2
1z4 + 144z1z5

+ 45z2
1z

2
2 + 15z3

2 + 120z1z2z3 + 90z2z4 + 40z2
3 + 120z6).

Using de Bruijn’s Theorem with ZG = ZD6
and ZH = ZS6

, and after a very tedious calculation, we get
the number 37. The use of hexagonal symmetry has reduced the poset size from its original 203 elements
to a class lattice of 37 elements.

Example 3. By a small modification of the technique we can count the elements for each rank in the
class lattice. We first apply ZS1

to find the number of elements in the class with 1 cluster. This is, of
course, always 1. Then we apply ZS2

to find the number of elements in the class with 1 or 2 clusters.
By subtracting the number of 1 cluster classes from this result we find the number of 2 cluster classes.
We iterate this calculation, that is, calculate the number of classes using ZSk

, subtract the number of
1, . . . , k − 1 cluster classes to get the number of k cluster classes. We perform this calculation for
k = 2, . . . , n.

Table 1 shows the results of calculating these values for n-gons from 1 to 12 vertices, assuming
dihedral group symmetry to reduce the partition lattice.

Number of Clusters Total Total
n-gon 1 2 3 4 5 6 7 8 9 10 11 12 Classes Partitions

1 1 - - - - - - - - - - - 1 1
2 1 1 - - - - - - - - - - 2 2
3 1 1 1 - - - - - - - - - 3 5
4 1 3 2 1 - - - - - - - - 7 15
5 1 3 5 2 1 - - - - - - - 12 52
6 1 7 14 11 3 1 - - - - - - 37 203
7 1 8 31 33 16 3 1 - - - - - 93 877
8 1 17 82 137 85 27 4 1 - - - - 354 4140
9 1 22 202 478 434 171 37 4 1 - - - 1350 21147

10 1 43 538 1851 2271 1249 338 54 5 1 - - 6351 115975
11 1 62 1401 6845 11530 8389 3056 590 70 5 1 - 31950 678570
12 1 121 3838 26148 58400 56079 26696 6907 1014 96 6 1 179307 4213597

Table 1: Class Count for Each Rank, for n-gons with Dihedral Symmetry
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