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Abstract

Percolation models are infinite random graph models which ex-

hibit phase transition behavior at critical values called percolation

thresholds. Several so-called ”universal formulas” that predict ap-

proximate values for percolation thresholds of all periodic graphs

have been proposed in the physics and engineering literature. The

existing universal formulas have been found to have substantial er-

rors in their predictions for some lattices. This paper proposes a set

of desirable criteria for universal formulas to satisfy, and begins to

investigate which criteria are satisfied by the formulas in the litera-

ture.

1 Introduction

1.1 Percolation Models

The bond percolation model is described briefly as follows: Consider an infi-
nite locally-finite connected graph G. Each edge of G is randomly declared
to be open (respectively, closed) with probability p (respectively, 1 − p)
independently of all other edges, where 0 ≤ p ≤ 1. The corresponding
parameterized family of product measures on configurations of edges is de-
noted by Pp. For each vertex v ∈ G, let C(v) be the open cluster containing
v, i.e. the (random) connected component of the subgraph of open edges
in G containing v. Let |C(v)| denote the number of vertices in C(v). The
critical probability or percolation threshold of the bond percolation model
on G, denoted pc(G bond), is the unique real number such that

p > pc(G bond) =⇒ Pp(∃ v such that |C(v)| =∞) > 0

and
p < pc(G bond) =⇒ Pp(∃ v such that |C(v)| =∞) = 0.
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Similarly, the site percolation model declares each vertex to be open
with probability p, and interest focuses on the connected components of
the subgraph induced by the open vertices.

Due to the interpretation of the percolation threshold as a phase tran-
sition point, percolation models have applications to thermal phase tran-
sitions, spontaneous magnetization, gelation processes, and epidemics. See
Grimmett [12] for a comprehensive discussion of mathematical percolation
theory, Stauffer [25] for a physical science perspective, and Sahimi [22] for
engineering science applications.

Since the origins of percolation theory [3], the determination of crit-
ical probabilities has been a challenging problem. Exact solutions have
been found only for arbitrary trees [17] and a small number of periodic
two-dimensional graphs [14, 15, 29, 30]. For other graphs of interest, the
problem has been approached by simulation and estimation, e.g. [25, 26],
and through rigorous bounds, e.g. [2, 16, 32, 33].

1.2 Universal Formulas

Research on percolation thresholds attempts to understand the dependence
of the critical probability upon the detailed structure of the underlying
graph. For over 40 years there have been efforts to find a universal formula,
based on a small number of features of the underlying lattice, for predicting
the values of the percolation threshold for all lattice graphs. We provide a
few important examples.

Vyssotsky, Gordon, Frisch, and Hammersley [28] studied bond percola-
tion on eight regular two- and three-dimensional lattices. They commented
that “pc appears to be little affected by differences of lattice type if the num-
ber of dimensions and coordination number are the same,” and mentioned
the approximation

pc =
d

(d− 1)q
, (1)

where d is the dimension of the lattice and q is the coordination number
(or vertex degree) of the lattice.

For site percolation, the formula

pc =
d

(d− 1)(q − 1)
(2)

was proposed by Sahimi et al [23] for d ≥ 3. An alternative formula for site
models,

pc =
1√

q − 1
, (3)

proposed by Galam and Mauger [7, 8] obtained good results in two dimen-
sions, but not for higher dimensions.
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Galam and Mauger [9, 10] provided estimates for several lattices using
the power law formula

pc = p0[(d− 1)(q − 1)]−adb, (4)

where the parameters p0, a, and b were determined by a fit to several exactly
known or precisely estimated percolation threshold values. The lattices
studied were classified into three “universality classes”. For the two classes
of lattices with dimensions d ≤ 7, b = 0 for site percolation and b = a
for bond percolation. One of these classes includes the two-dimensional
square, triangular, hexagonal, and dice lattices, for which p0 = 0.8889
and a = 0.3601 for site models and p0 = 0.6558 and a = 0.6897 for bond
models. The other class includes the Kagomé lattice and other lattices with
3 ≤ d ≤ 7, for which p0 = 1.2868 and a = 0.6160 for site percolation and
p0 = 0.7541 and a = 0.9346 for bond percolation. (The third class, which
we will not consider here, consists of lattices in eight or more dimensions.)
For the lattices considered in [9], the maximum deviation of the formula
from numerical estimates is ±0.008. However, the universality classes are
not precisely defined in terms of properties of the lattice graphs, so it is
unclear to which class a new lattice belongs.

Although the formulas of Galam and Mauger are in extremely good
agreement with simulation estimates for the lattices studied, some numeri-
cal discrepancies have been noted in the past. Van der Marck [18] noted that
if there is to be a universal formula for percolation thresholds, it needs to be
based on more information than d and q only. As examples, he provides two
three-dimensional lattices with d = 3 and q = 8, the body centered cubic
lattice and the stacked triangular lattice. Their site percolation threshold
estimates are .246 and .2623 respectively, with bond percolation estimates
of .1803 and .1859 respectively. Babaliewski [1] investigated and confirmed
a discrepancy of .020 in the estimate for the value of the bond percolation
threshold of the ferrovariant of the dodecagonal lattice. However, much
larger errors exist: Wierman [36] pointed out that there are errors in the
values of these formulas as large as .3434.

1.3 Desirable Properties of Universal Formulas

This study proposes the following collection of desirable properties for uni-
versal formulas, as part of the development of a framework for evaluating
various universal formulas.

The ideal universal formula for percolation thresholds will:

• Be well-defined.

• Be easily computable.
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• Provide values only between 0 and 1.

• Depend only on the adjacency structure of the lattice.

• Be accurate.

• Be consistent with the duality relationship (for bond models) and the
corresponding matching1 relationship (for site models).

• Be consistent with the containment principle.

• Be consistent with the contraction principle (for bond models).

• Be consistent with subdivision of edges (for bond models).

The first three properties are necessary for any reasonable formula. Ac-
curacy of predictions is perhaps the single most important property. The
final four ask that certain theoretical properties that have been proved for
percolation thresholds hold for the predictive formulas.

In section 2, we explain the meaning and justification of each property.
However, we also devote a separate section, Section 3, to a discussion of ac-
curacy, due to its importance. The results of our evaluation are summarized
in section 4.

Sections 2 and 3 also contain evaluations of the four universal formulas
that were mentioned in section 1.2: the formulas of Vyssotsky-Gordon-
Frisch-Hammersley (VGFH) and Galam-Mauger power law (GM-pl) for
bond thresholds, and the Galam-Mauger square root formula (GM-sr) and
Galam-Mauger power law (GM-pl) for site thresholds. In this initial inves-
tigation, we are limiting ourselves to formulas for two-dimensional infinite
graphs, since there is little mathematically rigorous knowledge of percola-
tion threshold values in other dimensions. These four formulas were chosen
as the most cited in the literature. All four universal formulas studied
here are based on the average degree of the infinite graph. For the average
degree to be well-defined, and for appropriateness for applications, we re-
strict consideration to the prediction of percolation thresholds for infinite
two-dimensional periodic graphs, where a periodic graph is as defined by
Kesten [15, pp. 10-11]: An infinite graph is periodic in d dimensions if it
is a connected, locally finite, contains no loops, and may be imbedded in
Rd in such a way that each coordinate vector is a period for the image and
every compact set of Rd intersects only finitely many edges. Furthermore,
we consider only graphs which have no pendant vertices, as such vertices
cannot contribute to percolative behavior.

1The matching relationship is different from the concept of matching pairs of vertices
in a graph. See Sykes and Essam [27] for a discussion.
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2 Discussion of Properties

We now elaborate on each of the desirable properties for percolation thresh-
olds listed in our evaluation framework.

2.1 Well-defined

A universal formula should give a well-defined unique value for every peri-
odic graph. Due to periodicity, the average degree can be can be defined
naturally as the limit of the average degrees for a sequence of finite rectan-
gles expanding in both dimensions, or equivalently as the average degree of
the graph in a rectangle of one period width in each dimension. Thus, the
VGFH and GM-sr formulas are well-defined. However, the GM-pl formulas
do not provide a clear definition of the “universality classes.” Since it is not
clear which formula applies to any particular graph, the GM-pl formulas
do not satisfy this property.

2.2 Easily Computable

A universal formula should be a function of graph parameters that are
easily computed. The formulas considered in this initial investigation are
all functions of the average degree, which is relatively easily determined, as
long as the fundamental periodic region contains few vertices.

However, estimates based on a limit of the number of spanning trees in
a region (as the region expands) have been proposed [4, 5, 13], and in early
percolation studies connections with the connective constant of self-avoiding
walks on the lattice were considered. Both of these values are exactly
known for few lattices, and reasonably accurate estimates of the unknown
values may take substantial computational effort. Dependence upon such
parameters seriously limits the usefulness of the universal formula.

2.3 Values in [0,1]

Since the percolation threshold is a probability value, its value for any
lattice graph must lie in the interval [0,1]. One would expect this to be
trivially satisfied for any proposed universal formula, and it is for the VGFH
and GM-sr universal formulas. However, it fails dramatically for GM-pl
formulas as the average degree approaches two: For bond thresholds, the
limit as q → 2 is 1.0578 for the Class 1 formula and is 1.4414 for the Class
2 formula. For site thresholds, the limit for the Class 2 formula is 1.2868.
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2.4 Adjacency Structure

From the definition of the percolation model, the percolation threshold
depends only on the adjacency structure of the lattice. All four universal
formulas investigated here are functions of the average degree, and thus
satisfy this property. However, there is a proposal in the literature to
estimate percolation thresholds on the basis of a filling factor, i.e., the
portion of the plane that is covered by certain disks centered at the vertices.
A universal formula based on a filling factor would depend on the embedding
of the lattice into the plane, which is irrelevant for the percolation model
and thus the value of the percolation threshold of the lattice.

2.5 Accuracy

There are several difficulties in assessing the accuracy of universal formulas.
One cannot determine the precise error that a formula makes except in the
few cases that the critical probability is exactly known. Even when the
precise error is known for a set of lattices, there are options of comparing
different universal formulas on the basis of maximum error, median error, or
mean error. Of course, these values will be dependent upon the set of lattice
graphs used for the comparison. In the case of the Galam and Mauger power
law estimates, there is the additional complication that the universality
class of a lattice is not well-defined. We discuss some approaches for dealing
with these issues, and carry out an analysis of accuracy, in Section 3.

2.6 Duality and Matching

An important theorem in percolation theory, due to Kesten [15], establishes
the relationship of bond percolation thresholds for a pair of dual planar
graphs, G and G∗. If the graphs have an axis of symmetry, then

pc(G) + pc(G
∗) = 1.

Thus, it is desirable for a universal formula to provide predictions of the
bond percolation thresholds p̂c(G) and p̂c(G

∗) which satisfy

p̂c(G) + p̂c(G
∗) = 1.

For site percolation, Kesten’s theorem proves that the same relationship
holds for percolation thresholds of pairs of matching graphs, which were
introduced by Sykes and Essam [27]. While we will not give the rather
complicated definition here, note that the line graphs of a pair of dual planar
graphs are a pair of matching graphs. It is also desirable that a universal
formula for site percolation thresholds be consistent with the matching
relationship.
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A graph that is isomorphic to its dual graph is called self-dual, and
similarly we may define self-matching. As examples, the square lattice is
self-dual and the triangular lattice is self-matching. Kesten’s results imply
in both cases that the percolation threshold is equal to one-half. Note that
if a universal formula fails to be consistent with the duality (or matching)
relationship, it is possible that it is still consistent with self-duality (or
self-matching).

Three of the formulas under investigation here fail both the duality or
matching relationship and the self-duality or self-matching property, since
the estimate for the bond percolation threshold for the square lattice and
the site percolation threshold for the triangular lattice are not one-half.
The GM-sr formula is particularly poor with an estimate of .4472 for the
triangular lattice site threshold. The GM-pl formulas have relatively small
errors regarding self-duality and self-matching, but have larger errors when
considering dual or matching pairs.

The VFGH formula is perfectly consistent with duality, and thus also
self-duality. This was shown by Sykes and Essam [27] using Euler’s formula
together with the one-to-one correspondences between edges in the graph
and its dual and between faces and vertices of the two graphs.

2.7 Containment

Fisher’s containment principle [6] states that if G is a subgraph of H, then

pc(G) ≥ pc(H)

for both bond and site models. Thus, a universal formula should provide
estimates satisfying

p̂c(G) ≥ p̂c(H)

as well.
We now show that the VGFH and GM-sr universal formulas are not

consistent with the containment principle, since they are monotone non-
increasing functions of the average degree: If we take a periodic graph G
with average degree greater than 2, we can add sufficiently long paths pe-
riodically to obtain a graph H with smaller average degree than G. Then,
G is a subgraph of H, so pc(G) ≥ pc(H) by the containment principle, but
q(G) > q(H), so the formulas provide estimates p̂c(G) < p̂c(H).

The lack of well-definition of the GM-pl formulas complicates the analy-
sis. The argument above is valid for the formula within each class. However,
it is possible that there is a graph G which is a subgraph of H where the
two graphs are in different classes, so that different formulas apply. With-
out a specification of the GM classes, we have not constructed an example
to show that the GM-pl formulas are inconsistent with the containment
principle.
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2.8 Contraction

The contraction principle, introduced by Wierman [31], states that if G is
obtained by contracting edges in H, then

pc(G) ≤ pc(H)

for bond models. Thus, a universal formula should provide estimates sat-
isfying

p̂c(G) ≤ p̂c(H)

as well.
We now show that the VGFH and GM-sr universal formulas are not

consistent with the contraction principle, since they are monotone nonin-
creasing functions of the average degree: In Figure 1, we show a graph with
average degree 3.75 in which edges can be contracted to obtain a graph
(the hexagonal lattice) with average degree 3. Thus, the estimated value
for the threshold of the contraction graph is less than the estimate for the
threshold of the original graph.

The lack of well-definition of the GM-pl formulas affects this analysis in
the same way as for containment.
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Figure 1: Contraction Example: Contract all six edges in each of the tri-
angles. The original graph has average degree 3.75, while the contracted
graph is the hexagonal lattice, which has average degree 3.

2.9 Subdivision

Given a graph G, let Gk denote the graph obtained by subdividing each
edge of G into k edges, i.e. by replacing each edge of G by a path of k
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edges. For bond percolation

pc(Gk) = [pc(G)]
1

k ,

so it is desirable that a universal formula provide estimates satisfying

p̂c(Gk) = [p̂c(G)]
1

k .

Consider the subgraph of G contained in a rectangular region, contain-
ing n vertices and e edges and thus average degree q = 2e

n
. Then Gk

contains n∗ = n + (k − 1)e vertices and e∗ = ke edges, so

q(Gk) =
2e∗

n∗
=

2kq

2 + (k − 1)q
.

Taking limits as the rectangular region expands provides the relationship
for the average degrees of the infinite graphs.

To investigate consistency of the VGFH formula with subdivision, we

compare [p̂c(G)]
1

k with

p̂c(Gk) =
2/q + k − 1

k
.

There are large discrepancies between the two formulas, since as q → ∞,

(p̂c(G))
1

k =
(

2

q

)
1

k

converges to zero, while p̂c(Gk) converges to
k−1

k
.

For the GM-pl formula, we compare

(p̂c(G))
1

k = p0

(

2

(q − 1)

)
a

k

with

p̂c(Gk) = p0

(

4(k − 1)/q + 2

(2k − 1− 2(k − 1)/q)

)a

,

Again, as q → ∞, the first quantity converges to zero, while the second
tends a positive constant.

Therefore, neither the VGFH or GM-pl universal formulas provide ad-
equate approximations under subdivision.

3 Accuracy

Our evaluation of the accuracy of the universal formulas has two compo-
nents: (1) For a selection of graphs, we determine the errors made by each
formula, and consider the maximum, median, and average error. (2) We
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consider theoretical evidence regarding the maximum errors made by the
formulas.

Throughout this discussion, if a lattice graph has been identified by
Galam and Mauger as being in a specific class, we provide only the for-
mula value for that class. For other lattices, we provide the formula values
for both classes of low-dimensional lattices, and compute errors using the
formula closest to the exact value, bounds, or estimates used as the “cor-
rect” value. We recognize that this procedure gives an advantage (perhaps
significant) to the Galam and Mauger formula.

3.1 Accuracy of Bond Model Formulas

For the evaluation of the bond percolation threshold formulas, we selected
nine lattice graphs. The exact critical probability value is known for five
of the graphs – the square [14], triangular and hexagonal [29], and bowtie
and bowtie dual lattices [30]. The other four graphs are the only lattices
in the physical science literature for which the bond percolation thresholds
are nearly exactly known [19] [20] [35], i.e., bounded in an interval of length
less than 0.01.

Table 1 provides the numerical comparisons of the VGFH and GM-pl
bond threshold formulas. The maximum error is smaller for the GM-pl
formula than for the VGFH formula: .0598 versus .0728. The median
error for the VGFH formula (.0140) is much larger than that of the GM-pl
formula (.0054). The average error of the VGFH formula (.0251) is more
than twice as large as the GM-pl formula (.0124), mainly since two errors
are quite large rather than just one. Note that even allowing the Galam
and Mauger estimate to use the formula for the class that gives the closest
result, the VGFH formula still has a smaller error for 2 of the 9 lattices in
Table 1.

Wierman [34] has shown that there exist graphs with average degree
6 that have bond percolation thresholds arbitrarily close to zero, and by
duality, graphs with average degree 3 that have bond percolation thresholds
arbitrarily close to one. Thus, the VGFH formula makes errors of at least
.3333 and the GM-pl formula makes errors of at least .3206.

Based on this evidence, we consider the accuracy of these formulas to
be comparable, and characterize their accuracy as only “Fair.”

3.2 Accuracy of Site Model Formulas

There are only three lattices in the physical science literature for which
the exact site percolation threshold is known, and there are no nearly ex-
actly solved cases. For this reason, we must use simulation estimates as
a standard for evaluating site threshold formulas. We will rely on high
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Lattice Value VGFH VGFH GM-pl GM-pl
Name or Bounds q Value Error Value Error

(3, 122) .7395,.7415 3 .6667 .0728 .6558,.7541 .0126
Hexagonal .6527 3 .6667 .0140 .6558 .0031
D(Bowtie) .5955 10/3 .6000 .0045 .5897,.6529 .0058
Kagomé .5216,.5277 4 .5000 .0216 .5162 .0054
Square .5000 4 .5000 .0000 .4958 .0042
Dice .4723,.4784 4 .5000 .0216 .4958 .0174

Bowtie .4045 5 .4000 .0045 .4066,.3945 .0021
Triangular .3473 6 .3333 .0140 .3486 .0013
D(3, 122) .2585,.2605 6 .3333 .0728 .3486,.3203 .0598

Table 1: Numerical Comparison of Bond Percolation Formulas

precision simulation estimates of the site percolation thresholds of the 11
Archimedean lattices by Suding and Ziff [26].

Table 2 provides the numerical comparisons of the GM-sr and GM-pl
site threshold formulas. The GM-sr formula underestimates the percolation
threshold for 10 of the 11 graphs. It also has nearly twice as large a maxi-
mum error (.1008) than the GM-pl formula (.0552). The median errors are
strikingly different: .0502 for GM-sr versus .0048 for GM-pl. The average
error of the GM-sr formula (.0485) is almost three times larger than that
of the GM-pl formula (.0179).

Based on this evidence, we consider the accuracy of the GM-pl formula
to be comparable to that of the bond percolation threshold formulas, and
characterize its accuracy as “Fair.” We consider the accuracy of the GM-sr
formula to be “Poor.”

4 Evaluation of Universal Formulas

We summarize our evaluation of the four universal formulas in Table 3. For
each of the nine desirable properties, we give our evaluation.

Question marks included on items for the GM-pl formulas indicate that
the answer depends on the specification of classes of graphs used to make
the formula well-defined. The formulas are computable if it is a simple
computation to determine which class a graph is in. The adjacency property
will be satisfied if the definition of classes depends only on the adjacency
structure. Consistency with the containment and contraction priniciples
depends on whether or not the related graphs can be of different classes.
As shown in Section 3, the accuracy depends heavily on the class definition,
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Lattice Suding-Ziff GM-sr GM-sr GM-pl GM-pl
Name Estimate q Value Error Value Error

(3, 122) .8079... 3 .7071 .1008 .6926,.8396 .0317
(4, 6, 12) .7478 3 .7071 .0307 .6926,.8396 .0552
(4, 82) .7297 3 .7071 .0226 .6926,.8396 .0371

Hexagonal .6970 3 .7071 .0101 .6926 .0044
Kagomé .6527... 4 .5774 .0753 .6540 .0013
(3, 4, 6, 4) .6218 4 .5774 .0444 .5985,.6540 .0233
Square .5937 4 .5774 .0163 .5985 .0048
(34, 6) .5795 5 .5000 .0795 .5396,.5478 .0317

(32, 4, 3, 4) .5508 5 .5000 .0508 .5396,.5478 .0030
(33, 42) .5502 5 .5000 .0502 .5396,.5478 .0024

Triangular .5000... 6 .4472 .0528 .4979 .0021

Table 2: Numerical Comparison of Site Percolation Formulas

since the formula values for the two classes may differ by as much as .1470
for site models and as much as .0983 for bond models.

The rating for duality and matching are to be interpreted as follows:
“Yes” indicates that the VGFH has been proved to be consistent with du-
ality. “Fair” indicates that the formula is not consistent with either duality
or self-duality (for bond models) or with either matching or self-matching
(for site models), but the difference from one of the critical probability sums
of appropriate pairs of graphs is relatively small. “Poor” is not consistent,
as for “Fair,” but with relatively large numerical errors. Although not used
here, “Good” would indicate that the formula is not consistent with duality,
but is consistent with self-duality, for example.

The evaluation shows that there is considerable room for improvement
in universal formulas for percolation thresholds. All the formulas studied
fail at least three of the nine criteria, and none is rated better than Fair on
accuracy. Although much older, the VGFH satisfies more of the properties
than the GM-pl formula for bond thresholds. There is no clear choice
between the two site threshold formulas, since the GM-pl formula fails
more properties but is more accurate than the GM-sr formula.

5 Future Research Directions

The work described in this article is just a preliminary investigation of
a few universal formulas. There are three related directions, described

12



Bond Model Formulas Site Model Formulas

Property VGFH GM-pl GM-sr GM-pl

Well-defined Yes No Yes No
Computable Yes Yes? Yes Yes?
Values in [0,1] Yes No Yes No
Adjacency Yes Yes? Yes Yes?
Accuracy Fair Fair? Poor Fair?

Duality & Matching Yes Fair Poor Fair
Containment No No? No No?
Contraction No No? N.A. N.A.
Subdivision No No N.A. N.A.

Table 3: Summary of Evaluations of Universal Formulas

briefly in the following subsections, for future research that are particularly
interesting to the authors.

5.1 Other Formulas or Methods

Researchers have considered other means of developing universal formulas
for the percolation threshold, based on a minimal spanning tree approach
[4, 5, 13], lattice Green functions [23], filling factor [24], and preferred direc-
tions for cluster formation [21]. We would like to evaluate these approaches
using the framework of this paper.

5.2 Relationship Between Formulas for Bond and Site
Models

In [10], Galam and Mauger extended their formula via the use of an ef-
fective parameter qeff to replace the average coordination number q. They
suggest that their formula has predicting ability for percolation thresholds
which have not yet been computed. For example, if the site threshold of a
lattice has been estimated, qeff can be computed from the formula for site
thresholds, and can be used to predict the bond threshold from the formula
for bond thresholds.

The Galam & Mauger extension raises the issue of evaluating the rela-
tionship between formulas for the bond threshold and the site threshold.
We have already identified some desirable properties:

13



(1) The universal formulas should be consistent with the bond-to-site trans-
formation, satisfying

p̂c(G bond ) = p̂c(L(G) site ),

where L(G) denotes the line graph (also called the covering graph in the
physical science literature) of G. This equality holds for percolation thresh-
olds by an early result of Fisher [6].

(2) For every graph, the universal formulas should satisfy

p̂c(G bond ) ≤ p̂c(G site ).

Hammersley [11] proved that this holds for percolation thresholds of every
infinite graph.

(3) The universal formulas should not imply that two graphs must have
their bond percolation and site percolation thresholds in the same order.
While this was commonly believed for many years, Wierman [38] provided
examples of pairs of graphs with the site percolation thresholds in the op-
posite order than their bond percolation thresholds.

5.3 Developing Improved Universal Formulas

The ultimate goal of this research program is to develop improved universal
formulas. This is a challenging problem, since it is clear from our analysis
that the existing universal formulas leave much to be desired.

A way must be found to incorporate other information besides the di-
mension and the average degree of the lattice. This can be seen in Table
2, since graphs with the same degree have different percolation thresholds.
For example, the four Archimedean lattices which are regular with degree
3 have estimated site percolation thresholds ranging from .6970 to .8079.

The major challenges are to identify other features of the graphs that
play a role in determining the percolation threshold, and to formulate im-
proved universal formulas which satisfy more of the desirable properties
than the existing universal formulas.

As one possibility, Wierman and Vahidi [37] suggested that the vari-
ability of the vertex degree has an effect on the percolation threshold, with
higher variability leading to lower critical probability values. For planar
lattice bond percolation models, the variability of degree of the dual lattice
corresponds to the variability of the number of sides of faces in the origi-
nal lattice, so characteristics of the faces may play a role. Formulation of
these ideas will necessarily involve investigation of alternative measures of
variability of degree and numbers of edges of faces.

14



An interesting idea is to employ the existing formulas in developing
improved formulas. For example, since the VGFH formula satisfies more
properties than the others, we plan to study the conversion of the VGFH
formula via the bond-to-site transformation to derive a site percolation
threshold formula which might outperform the GM-sr and GM-pl formulas.
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Advancement of Research in Statistics.
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