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Abstract

Finding a minimum dominating set is one of the NP complete
core problems. In this paper, we will discuss the limiting behavior of
the domination number of random class cover catch diagraphs (CC-
CDs). The CCCD problem is motivated by its applications in pat-
tern classification. For the special case of uniformly distributed data
in one dimension, Priebe, Marchette and Devinney found the exact
distribution of the domination number of the random data-induced
CCCD, and Devinney and Wierman proved the Strong Law of Large
Numbers (SLLN). We will present progress toward the SLLN and the
Central Limit Theorem (CLT) for general data distributions in one
dimension. The ultimate goal is to establish SLLN and CLT results
for higher dimensional CCCD.
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1 Introduction

1.1 Class Cover Problem

The class cover problem (CCP) is motivated by its applications in statis-
tical pattern classification [?]. It was first initiated by Cowen and Cannon
[?], and has been actively studied recently, since the solution to it can be
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directly used to generate classifiers1 competitive with the other methods.
Roughly speaking, in the setting of classification, the CCP is just a problem
of selecting a small set of data points to be representative of a class.
Now we give a formal description of the CCP. Consider a dissimilarity

function d : Ω × Ω → R such that d(α, β) = d(β, α) ≥ d(α, α) = 0 for
∀α, β ∈ Ω. We suppose {Xi : i = 1, · · · , n} and {Yj : j = 1, · · · ,m} are two
sets of i.i.d. random variables taking values in Ω, with class-conditional
distribution functions FX and FY , respectively. We assume Xi’s are inde-
pendent of Yj ’s.

Definition 1.1. For each Xi, we define the covering ball B(Xi) = {ω ∈
Ω : d(ω,Xi) < minjd(Yj , Xi)}.

A class cover of X is a subset of covering balls whose union contains
all Xi’s. Obviously the set consisting of all covering balls is a class cover.
However, we want to choose a class cover to represent class X that is as
small as possible, to make the classifier less complex while keeping most of
the relevant information. Therefore, the CCP we consider here is to find a
minimum cardinality class cover.

1.2 Class Cover Catch Digraph

We can convert the CCP to a purely graph theory problem as follows:

Definition 1.2. The class cover catch digraph (CCCD) induced by a CCP
is the digraph D = (V,A) with the vertex set V = {Xi : i = 1, · · · , n}
and the edge set A such that there is a directed edge (Xi, Xj) if and only if
Xj ∈ B(Xi).

Definition 1.3. The set S ⊂ V is a dominating set of a diagraph D =
(V,A) if and only if for all v ∈ V , either v ∈ S or (s, v) ∈ A for some
s ∈ S.

It is easy to see that the CCP is actually equivalent to finding a minimum
cardinality dominating set of the corresponding CCCD. Cowen and Cannon
prove that the dominating set problem is essentially a special case of the
CCP, and since the dominating set problem is NP-hard, it follows that the
CCP is also NP-Hard [?].

1.3 Domination Number

Definition 1.4. The domination number of a CCCD is the cardinality of
the CCCD’s minimum dominating set.

1We will formally give the definition of classifier in Section 1.4.
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In 1962, Ore first used the name “domination number” in his book
[?]. For its many applications in such fields as computer networks, social
sciences, computational complexity, etc, there has been a rising interest in
this area, with a lot of results obtained very recently. The book by Haynes,
Hedetniemi and Slater provides a comprehensive discussion of domination
in graphs [?]. More advanced topics are covered in [?].
In the CCCD problem, the domination number is especially important.

It is useful in approximating minimum dominating sets. Here we denote
the domination number by Γn,m(FX , FY), or simply by Γn,m. Obviously,
Γn,m is a random variable whose distribution depends on n,m,FX and FY .

1.4 Applications in Pattern Classification

Pattern classification is “the assignment of a physical object or event to one
of several pre-specified categories” (See [?, page 2]). It is widely applied to
real world problems such as automated speech recognition, DNA sequence
identification, fingerprint identification, etc.
The abstract mathematical model of the pattern classification problem

is formulated as follows [?]. For simplicity, but without loss of generality,
suppose we have two classes of objects of interest, which we will call class
X and class Y, respectively. We assume that the objects of both classes
belong to a common dissimilarity space Ω. To model the uncertainty about
which class the objects we encounter belong, we assume that there are prior
probabilities PX and PY for these two classes (

∑

c∈{X ,Y} Pc = 1). Further-
more, we assume that given the class X or Y, the objects of that class
are drawn according to the class-conditional distribution function FX (x)
or FY(y). We can generate a random pair

(

c(Ψ),Ψ
)

in a two-step process:
first choose the random class label c(Ψ) ∈ {X ,Y} according to the prior
probabilities; then based on the chosen class, select Ψ according to the
corresponding class-conditional distribution function.
In a classification problem, for an observation pair (c(ψ), ψ) generated

as above, only the data part ψ is given while the class label part c(ψ) is
unknown, so the goal of a classifier is to guess whether c(ψ) is X or Y. In
many situations, in addition to ψ, we are also given a training sample of
size k with known classification:

Dk =
{

(

c(ψ1), ψ1
)

, · · · ,
(

c(ψk), ψk

)

}

.

So generally, a classifier is a function ĉk(ψ) = ĉk(ψ,Dk), which, based on
the training data Dk, assigns a class label X or Y to any input point ψ ∈ Ω.
The performance of a classifier ĉ can be measured by the probability of error,
or misclassification rate, given by

E
[

P (ĉk(Ψ) 6= c(Ψ) | Dk)
]

.
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The CCP can be used to build classifiers. Just shown here as an exam-
ple, a simple classifier can be constructed as follows: by switching the roles
of X and Y, we can get a pair of dual CCP’s, resulting in two solutions such
as BX =

{

B(Xi) : i ∈ I, I ⊂ {1, · · · , n}
}

and BY =
{

B(Yj) : j ∈ J, J ⊂

{1, · · · ,m}
}

, respectively. Define CX = {ω ∈ Ω : ω ∈ B(Xi) s.t. B(Xi) ∈
BX }, CY = {ω ∈ Ω : ω ∈ B(Yi) s.t. B(Yi) ∈ BY}. We can incorporate these
two solutions into a classifier ĉ(ψ) : Ω→ {X ,Y} as follows:

ĉ(ψ) =











X ψ ∈ CX ∩ CY
c,

Y ψ ∈ CY ∩ CX
c,

undetermined otherwise.

For a thorough description of pattern classification, see the two classic
books [?] and [?]. More details about the CCP’s application to classification
are presented in [?].

2 Previous Results

There have been several research results on the probabilistic properties of
Γn,m in the case of Ω = R. In this one dimensional situation, we denote
Y(j) as the jth order statistic of Y0 = 0, Y1, · · · , Ym, Ym+1 = 1, and let the
random variable αj,m be the minimum number of covering balls needed to
cover the Nj,m X -class points located between Y(j) and Y(j+1). We refer
to αj,m (j = 0,m) as external components, and αj,m (j = 1, · · · ,m− 1) as
internal components. It should be noted that Γn,m =

∑m

j=0 αj,m. This way
we are able to decompose the problem into m+ 1 sub-problems of finding
the domination number αj,m in the interval [Y(j), Y(j+1)]. It is easy to see
that αj,m can be at most 2, because all Xi’s in [Y(j), Y(j+1)] are contained
in the covering balls of the two X points that are closest to midpoint of
this interval on the right and left.
Priebe, Devinney and Marchette [?] find the conditional distribution of

αj,m given Nj,m for the special case of Ω = R and FX = FY = U [0, 1],
where U [0, 1] is the uniform distribution on the interval [0, 1]:

Theorem 2.1. Suppose Ω = R. If FX = FY = U [0, 1], then the following
are true:

• For j ∈ {0, 1, · · · ,m}, if Nj,m = 0 then αj,m = 0.

• For j ∈ {0,m}, if Nj,m > 0 then αj,m = 1.

• For j ∈ {1, 2, · · · ,m− 1}, if Nj,m = nj > 0 then

P (αj,m = 1 | Nj,m = nj) = 1− P (αj,m = 2 | Nj,m = nj)

=
5

9
+
4

9

1

4nj−1
.
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From the above theorem, we know that αj,m ∈ {0, 1, 2}, and αj,m = 0
iff Nj = 0. Given Nj = nj > 0, for j ∈ {1, 2, · · · ,m − 1}, the conditional
probability of αj,m = 2 is an increasing function of nj , which just means
that αj,m tends to become larger as the number of X points increases.
Under the same assumptions as Theorem 1.1, Devinney and Wierman

prove a strong law of large numbers for Γn,m [?]:

Theorem 2.2. Suppose Ω = R. For the special case of FX = FY = U [0, 1],
we have

lim
n→+∞

Γn,m

m
= g(r) a.s.

where g(r) ≡ 12r+13
3(r+1)(4r+3) , and m = brnc, r ∈ (0,∞).

Using MATLAB, we draw a graph of lim
n→+∞

Γn,m

m
= g(r) as a function

of r:

0 5 10 15
0

0.5

1

1.5

r

g(
r)

Figure 1: g(r)

As shown in Figure 1, we can see that when r → ∞, g(r) → 0, which
is justified by the fact that asymptotically the interval between Y(j) and

Y(j+1) contains no X point almost surely. Moreover, as r → 0, g(r) → 13
9 .

This corresponds to the situation where each interval between Y(j) and
Y(j+1) contains very large number of X points. According to Theorem 1.1,

the probability of αj,m = 1 is approximately 5
9 , while the probability of
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αj,m = 2 is approximately
4
9 , therefore

13
9 =

5
9 · 1+

4
9 · 2 can be just viewed

as an expectation value of αj,m.
In their proof in [?], DeVinney and Wierman first prove the special case

of r = 1. They construct two related Poisson processes A and B, with
common rate λ ∈ (0,∞). Points of A play the role of X points, and points
of B play the role of Y points. Classical SLLN can be applied to a CCP
induced from these A and B points, then the result is transferred back to
the original setting.
For the r 6= 1 case, the proof is easily extended by letting process A

having rate rλ and process B having rate λ.
Remark : We also find an alternative proof to Theorem 2.2 by using an

existing SLLN theorem for quadrant dependent random variables [?]. The
concept of quadrant dependence was first introduced by E.L. Lehmann in
[?], and the limiting theory for quadrant dependent random variables is
comprehensively discussed in [?].

3 Strong Law of Large Numbers (SLLN)

In Theorem 2.2, we assume that classes X and Y both have uniform dis-
tribution. But in real world applications, they usually have different non-
uniform distributions. Our research has proved an extension to Theorem
2.2 for more general distribution functions in the one dimensional case:

Theorem 3.1. Suppose Ω = R. Assume the densities fX (x) and fY(y)
are bounded functions with a finite number of discontinuities. Then

lim
n→+∞

Γn,m

m
=

∫

g
(

r
fY(u)

fX (u)

)

fY(u)du a.s. (1)

where g(r) = 12r+13
3(r+1)(4r+3) and m/n→ r.

Proof Sketch. Our proof is conducted in two phases:
We first consider piece-wise constant densities fX and fY , i.e.

fX (x) =

k
∑

l=1

alI[cl−1,cl)(x),

fY(y) =

k
∑

l=1

blI[cl−1,cl)(y)

where a = c0 < c1 < · · · < ck = b. To prove (1) for this type of density
function, we divide the CCP into sub-CCP’s with uniform distribution for
the intervals [cl−1, cl]. In each interval, the ratio between the number of
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Y points and X points is asymptotically r fY(u)
fX (u)

. So from Theorem 2.2, we

know that

domination number in [cl−1, cl]

number of Y points in[cl−1, cl]

is asymptotically g
(

r fY(u)
fX (u)

)

, u ∈ [cl−1, cl]. By adding up the domination

numbers for all the intervals, we get an approximation Γ′ to Γn,m. We can

prove that equation (1) holds if
Γn,m

m
is replaced by Γ′

m
. Since the difference

between Γ′ and Γn,m is bounded by 2k where k is fixed, we conclude that
equation (1) is also true.
Then for the general continuous case, we construct a sequence of piece-

wise constant density functions FX ,k and FY,k converging to FX and FY ,
respectively. Based on Xi and Yj , we define two new sequences of random
variablesXi,k and Yj,k, which are respectively distributed according to FX ,k

and FY,k. From the first step in our proof, we know that the SLLN is true
for the domination number of the CCCD induced by the newly defined
points Xi,k and Yj,k. By using the relation between Xi and Xi,k, and
between Yi and Yi,k, we can argue that the SLLN still holds for the original
densities FX and FY .

In addition, we prove that equal fX and fY give the maximum limit in
the SLLN, that is:

Theorem 3.2. Under the same assumptions as in Theorem 3.1,

∫

g
(

r
fY(u)

fX (u)

)

fY(u)du ≤ g(r)

where the equality holds if and only if fX (u) = fY(u) a.s.

Proof. Note that g(r) is a convex function, hence g∗(r) = g( 1
r
) is a concave

function. Therefore by Jensen’s inequality, we have

∫

g
(

r
fY(u)

fX (u)

)

fY(u)du =

∫

g∗
(1

r

fX (u)

fY(u)

)

fY(u)du

≤ g∗
(

∫

1

r

fX (u)

fY(u)
fY(u)du

)

= g∗(
1

r
) = g(r)

An intuitive explanation for the above inequality is that when class X
and class Y both have the same distribution pattern, a larger dominating
set is needed to distinguish X from Y.
This result could be used to construct distribution-free statistical tests.
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4 Asymptotic Variance

Our ultimate goal is to prove the CLT for Γn,m. To achieve this, an impor-
tant first step is to calculate the limiting variance:

Theorem 4.1. Suppose Ω = R, and FX = FY = U [0, 1]. Then

lim
n→∞

V ar(Γn,m)

m
= v(r)

where v(r) ≡ 2304r6+13056r5+29792r4+34512r3+20697r2+5586r+360
18(r+1)3(4r+3)4 , and m/n →

r.

Using MATLAB, we draw a graph of lim
n→+∞

V ar(Γn,m)
m

= v(r) as a

function of r:
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Figure 2: v(r)

As an intermediate step in the proof of Theorem 4.1, we obtain that for
any j1, j2 such that 1 ≤ j1, j2 ≤ m− 1 and j1 6= j2,

Cov(αj1,m, αj2,m) =
−r2(2304r4 + 9984r3 + 16096r2 + 11440r + 3025)

9(r + 1)3(4r + 3)4

·
1

m
+ o(

1

m2
).

This says that αj,m’s are weakly dependent in the sense that the covariances
tend to 0 in the order of O(m). This fact may be helpful in proving the
Central Limit Theorem.
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Proof Sketch. First we compute the conditional expectation E(αk
j,m | Nj,m),

k = 1, 2 and E(αj1,mαj2,m | Nj1,m, Nj2,m) using those formulas in Theorem
1.1; then we need to calculate E(4Nj,m) and E(4Nj1,m+Nj2,m) to get the
final result.

5 Future Research Directions

We plan to continue investigating the limiting behavior of the domination
number, namely, the strong law of large numbers and central limit theorem
for Γn,m. This research will continue in two directions: one is to prove
the SLLN for the higher dimensional space Ω = R

d, d ≥ 2; the other is to
prove the CLT for Γn,m for the case of Ω = R and FX = FY = U [0, 1],
then extend it to more general distribution functions, and finally to higher
dimensional spaces.
To directly prove the CLT using characteristic function methods, we

might need to calculate the 3rd or even 4th moment. Considering that it
has taken us a long time to get the limiting variance (i.e., 2nd moment), we
certainly want to avoid this complicated computation by using or improving
some existing CLT theorem. Some possible ways include Stein’s method
and quadrant dependence. Another useful reference we would like to look
into is a series of results by J.E. Yukich and his collaborators [?].
It should be noted that the one dimensional problem is mainly a testing

ground for identifying approaches that might be useful in higher dimen-
sions. The real goals are the SLLN and CLT in higher dimensional CCCD
problems. One difficulty we encounter in higher dimension situations is how
to divide the whole sample space into regions, as we divided the [0, 1] into
intervals (Y(j), Y(j+1)) in the one dimensional case. Therefore most likely
we will not have such a simple identity as Γn,m =

∑m

j=1 αj,m.
After proving the CLT and SLLN for Γn,m, we would also like to apply

the developing methods to get these results for other similar functions of
the CCCD besides the domination numbers. One example is the size of
greedy algorithm approximation to the minimum dominating set.
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