Steps of RSM for Optimizing x

Step 0 (Initialization) Initial guess at optimal value of x.

Step 1 (Collect data) Collect responses z from several x values in neighborhood of current estimate of best x value (can use experimental design).

Step 2 (Fit model) From the x, z pairs in step 1, fit regression model in region around current best estimate of optimal x.

Step 3 (Identify steepest descent path) Based on response surface in step 2, estimate path of steepest descent in factor space.

Step 4 (Follow steepest descent path) Perform series of experiments at x values along path of steepest descent until no additional improvement in z response is obtained. This x value represents new estimate of best vector of factor levels.

Step 5 (Stop or return) Go to step 1 and repeat process until final best factor level is obtained.
Nonlinear Design

• Assume model

\[z = h(\theta, x) + \nu, \]

where \(\theta \) enters nonlinearly

• \(D \)-optimality remains dominant measure
 – Maximization of determinant of Fisher information matrix (from Chapter 13 of ISSO: \(\mathbf{F}_n(\theta, x) \) is Fisher information matrix based on \(n \) data points)

• Fundamental distinction from linear case is that \(D \)-optimal criterion depends on \(\theta \)

• Leads to conundrum:

Choosing \(x \) to best estimate \(\theta \), yet need to know \(\theta \) to determine \(x \)
Strategies for Coping with Dependence on θ

- Assume nominal value of θ and develop an optimal design based on this fixed value.
- Sequential design strategy based on an iterated design and model fitting process.
- Bayesian strategy where a prior distribution is assigned to θ, reflecting uncertainty in the knowledge of the true value of θ.

Sequential Approach for Parameter Estimation and Optimal Design

Step 0 (Initialization) Make initial guess at $\theta, \hat{\theta}_0$. Allocate n_0 measurements to initial design. Set $k = 0$ and $n = 0$.

Step 1 (D-optimal maximization) Given X_n, choose the n_k inputs in $X = X_{nk}$ to maximize
\[
det[F_n(\hat{\theta}_n, X_n) + F_{nk}(\hat{\theta}_n, X)].
\]

Step 2 (Update θ estimate) Collect n_k measurements based on inputs from step 1. Use measurements to update from $\hat{\theta}_n$ to $\hat{\theta}_{n+n_k}$.

Step 3 (Stop or return) Stop if the value of θ in step 2 is satisfactory. Else return to step 1 with the new k set to the former $k + 1$ and the new n set to the former $n + n_k$ (updated X_n now includes inputs from step 1).
Comments on Sequential Design

• Note two optimization problems being solved: one for ξ, one for θ

• Determine next n_k input values (step 1) conditioned on current value of θ
 – Each step analogous to nonlinear design with fixed (nominal) value of θ

• “Full sequential” mode ($n_k = 1$) updates θ based on each new input–output pair (x_k, z_k)

• Can use stochastic approximation to update θ:

\[
\hat{\theta}_{n+1} = \hat{\theta}_n - a_n Y_n (\hat{\theta}_n \mid z_{n+1}, x_{n+1})
\]

where

\[
Y_n (\theta \mid z_{n+1}, x_{n+1}) = \frac{1}{2} \frac{\partial}{\partial \theta} [z_{n+1} - h(\theta, x_{n+1})]^2
\]
Bayesian Design Strategy

• Assume prior distribution (density) for θ, $p(\theta)$, reflecting uncertainty in the knowledge of the true value of θ.
• There exist multiple versions of D-optimal criterion
• One possible D-optimal criterion:

$$E_{\theta}\left\{ \log \det [F_n(\theta, X)] \right\} = \int_{\Theta} \log \det [F_n(\theta, X)] p(\theta) d\theta$$

• Above criterion related to Shannon information
• While log transform makes no difference with fixed θ, it does affect integral-based solution.
• To simplify integral, may be useful to choose discrete prior $p(\theta)$