CHAPTER 17

OPTIMAL DESIGN FOR EXPERIMENTAL INPUTS

• Organization of chapter in ISSO
 – Background
 • Motivation
 • Finite sample and asymptotic (continuous) designs
 • Precision matrix and D-optimality
 – Linear models
 • Connections to D-optimality
 • Key equivalence theorem
 – Response surface methods
 – Nonlinear models
Optimal Design in Simulation

• Two roles for experimental design in simulation
 – Building approximation to *existing* large-scale simulation via “metamodell”
 – Building simulation model itself

• Metamodels are “curve fits” that approximate simulation input/output
 – Usual form is low-order polynomial in the inputs; linear in parameters θ
 – *Linear* design theory useful

• Building simulation model
 – Typically need *nonlinear* design theory

• Some terminology distinctions:
 – “*Factors*” (statistics term) \rightarrow “*Inputs*” (modeling and simulation terms)
 – “*Levels*” \rightarrow “*Values*”
 – “*Treatments*” \rightarrow “*Runs*”
Unique Advantages of Design in Simulation

- Simulation experiments may be considered special case of general experiments
- Some unique benefits occur due to simulation structure
- Can control factors not generally controllable (e.g., arrival rates into network)
- Direct repeatability due to deterministic nature of random number generators
 - Variance reduction (CRNs, etc.) may be helpful
- Not necessary to randomize runs to avoid systematic variation due to inherent conditions
 - E.g., randomization in run order and input levels in biological experiment to reduce effects of change in ambient humidity in laboratory
 - In simulation, systematic effects can be eliminated since analyst controls nature
Design of Computer Experiments in Statistics

• There exists significant activity among statisticians for experimental design based on computer experiments
 – T. J. Santner et al. (2003), *The Design and Analysis of Computer Experiments*, Springer-Verlag
 – Etc.

• Above statistical work differs from experimental design with *Monte Carlo simulations*
 – Above work assumes *deterministic function evaluations* via computer (e.g., solution to complicated ODE)

• One implication of deterministic function evaluations: no need to replicate experiments for given set of inputs

• Contrasts with Monte Carlo, where replication provides variance reduction
General Optimal Design Formulation (Simulation or Non-Simulation)

- Assume model
 \[z = h(\theta, x) + v , \]
 where \(x \) is an input we are trying to pick optimally

- Experimental design \(\xi \) consists of \(N \) specific input values \(x = \chi_i \) and proportions (weights) to these input values \(w_i : \)

\[\xi \equiv \begin{pmatrix} \chi_1 & \chi_2 & \cdots & \chi_N \\ w_1 & w_2 & \cdots & w_N \end{pmatrix} \]

- **Finite-sample** design allocates \(n \geq N \) available measurements exactly; **asymptotic (continuous)** design allocates based on \(n \to \infty \)
D-Optimal Criterion

- Picking optimal design ξ requires criterion for optimization.
- Most popular criterion is D-optimal measure.
- Let $\mathbf{M}(\theta, \xi)$ denote the “precision matrix” for an estimate of θ based on a design ξ.
 - $\mathbf{M}(\theta, \xi)$ is inverse of covariance matrix for estimate
 - $\mathbf{M}(\theta, \xi)$ is Fisher information matrix for estimate.
- D-optimal solution is
 \[\xi^* = \arg \max_{\xi} \{ \det[\mathbf{M}(\theta, \xi)] \} \]
Equivalence Theorem

- Consider linear model
 \[z_k = h_k^T \theta + v_k, \quad k = 1, 2, \ldots, n \]

- Prediction based on parameter estimate \(\hat{\theta}_n \) and "future" measurement vector \(h^T \) is
 \[\hat{z} = h^T \hat{\theta}_n \]

- Kiefer-Wolfowitz equivalence theorem states:
 \[D \text{-optimal solution for determining } \xi \text{ to be used in forming } \hat{\theta}_n \text{ is the same } \xi \text{ that minimizes the maximum variance of predictor } \hat{z} \]

- Useful in practical determination of optimal \(\xi \)
Variance Function as it Depends on Input: Optimal *Asymptotic* Design for Example 17.6 in *ISSO*
Orthogonal Designs

• With linear models, usually more than one solution is D-optimal
• Orthogonality is means of reducing number of solutions
• Orthogonality also introduces desirable secondary properties
 – Separates effects of input factors (avoids “aliasing”)
 – Makes estimates for elements of θ uncorrelated
• Orthogonal designs are not generally D-optimal; D-optimal designs are not generally orthogonal
 – However, some designs are both
• Classical factorial (“cubic”) designs are orthogonal (and often D-optimal)
Example Orthogonal Designs, $r = 2$ Factors

Cube (2^r design)

Star ($2r$ design)
Example Orthogonal Designs, $r = 3$ Factors

Cube (2^r design)

Star ($2r$ design)