Day 12 Homework

1. (From the midterm exam)
 a. Prove that $b \mod n = (b+nk) \mod n$.

2. Suppose $a \equiv b \pmod{n}$. Prove that $a \mod n = b \mod n$. (You may use 1)

3. Suppose $a \mod n = b \mod n$. Prove that $a \equiv b \pmod{n}$.

Note: 2 and 3 show that $a \equiv b \pmod{n}$ if and only if $a \mod n = b \mod n$.
(b) Let m be a positive integer, and suppose $a^m \equiv 1 \pmod{n}$.

1. Prove that $a^{km} \equiv 1 \pmod{n}$ for any positive integer k. (If this is difficult, you may prove this for $k = 3$).

2. Prove that $a^{km+1} \equiv a \pmod{n}$ for any positive integer k.

(c) (Modular exponentiation) Let b be a positive integer. The notation a^b means to multiply a by itself repeatedly, with a total of b factors of a, i.e.,

$$a^b = \underbrace{a \times a \times a \times \ldots \times a}_{b \text{ times}}$$

The notation for \mathbb{Z}_n is the same. If $a \in \mathbb{Z}_n$, in the context of \mathbb{Z}_n, we have

$$a^b = \underbrace{a \circ a \circ a \circ \ldots \circ a}_{b \text{ times}}$$

Without the aid of a calculator, find, in \mathbb{Z}_{100}, the value of 36^4.