Day 11 Homework.

① Please calculate the following in the \mathbb{Z}_n specified.

(1) $8 \oplus 10$ in \mathbb{Z}_{10}
(2) $8 \oplus 6$ in \mathbb{Z}_{10}
(3) $8 \oplus 7$ in \mathbb{Z}_{10}
(4) $5 \oplus 9$ in \mathbb{Z}_{40}
(5) $50 \oplus 21$ in \mathbb{Z}_{70}

(6) $1 \oplus 13$ in \mathbb{Z}_{100}.
(7) \(40 \equiv 31 \mod 43 \)

6. Let \(n \) be a positive integer, and let \(a, b \in \mathbb{Z}_n \) be invertible. Prove or disprove each of the following statements.

1. \(a \oplus b \) is invertible.

2. \(a \odot b \) is invertible.

3. \(a \otimes b \) is invertible.

4. \(a \boxdot b \) is invertible.
Suppose $n \geq 2$. Show that n^{-1} is invertible in \mathbb{Z}_n and that it is its own inverse, i.e.,
\[(n^{-1})^{-1} = n^{-1}.
\]

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $B = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ be regular (not modular) matrices.

1. Compute AB.

2. Compute $\det(AB)$ (i.e., the determinant of AB).

3. Compute $\det(A)$ and $\det(B)$.

4. Is $\det(A)\det(B)$ equal to $\det(AB)$?
(2) Consider a matrix \(A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \).

(1) Find a constant \(c \) so that
\[
\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

(2) The constant \(c \) you found in (1) is called an eigenvalue of \(A \), and the vector \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) is called the eigenvector of \(A \) associated with the eigenvalue \(c \).

Find another eigenvalue and the corresponding eigenvector \(\begin{pmatrix} x \\ y \end{pmatrix} \) such that the eigenvector is not a constant multiple of \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \), i.e., \(\begin{pmatrix} x \\ y \end{pmatrix} \neq \alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) for any constant \(\alpha \). (Note: the zero vector \(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \) is not considered an eigenvector.)