21. Let A be an $m \times n$ matrix of rank r. Let p be any point in \mathbb{R}^n. Show that the set

\[\text{null}(A) = \{ x \in \mathbb{R}^n | Ax = 0 \} \]

forms a subspace of \mathbb{R}^n. Explain why this is a basis for $\text{null}(A)$.

22. Show that in solving the least-squares problem for the equation $Ax = b$, we can represent

\[\min_{x \in \mathbb{R}^n} \| b - Ax \| \]

as

\[\min_{x \in \mathbb{R}^n} \| Ax - b \| \]

23. Let A be a diagonal matrix and B a unitary matrix. Under what conditions is $A + B$ a unitary matrix?

24. Let A be a diagonal matrix and B a unitary matrix. Under what conditions is $A + B$ a unitary matrix?

25. Prove that when x is as defined

\[q = x \in \mathbb{R}^n \]

Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

26. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

27. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

28. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

29. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

30. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

31. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

32. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

33. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

34. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

35. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

36. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

37. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

38. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

39. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

40. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

41. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

42. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

43. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

44. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

45. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

46. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

47. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

48. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

49. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

50. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

51. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

52. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

53. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

54. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

55. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

56. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

57. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

58. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

59. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

60. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

61. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

62. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

63. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

64. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

65. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

66. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

67. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

68. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

69. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]

70. Prove that x is a minimum when x is a solution of the equation

\[\| x \| = \min_{y \in \mathbb{R}^n} \| y \| \]
Theorem 1

The existence of the singular-value decomposition (SVD) of an arbitrary complex matrix A is guaranteed.

Proof

The matrix A can be decomposed into $A = UDV^*$, where U and V are unitary matrices (and thus have singular values of 1 on the diagonal) and D is a diagonal matrix with non-negative real entries (the singular values of A).

We begin our discussion with the singular-value decomposition.

5.4 Singular-Value Decomposition

A problem and its solution in the context of preparing for the exam.

The following example illustrates this point.

3. (Continuation) If x^* is the least-squares solution of the equation $Ax = b$, how can the least-squares solution be viewed without solving for x?

$$x = \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right].$$

3.1. Program both the Gram-Schmidt and orthogonal projection methods.

1. Problem 5.3

39. Apply the Gram-Schmidt

30. Determine x^* and Ax^*.

3.2. Let A be an $m \times n$ matrix of unspecified rank. Let $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$.

26. Let A be an $m \times n$ matrix of unspecified rank. Let $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$.

27. (Continuation) If x^* is the least-squares solution of the equation $Ax = b$, how can the least-squares solution be viewed without solving for x?

28. Prove that the inner product is additive in one vector and linear in the other vector.

29. Prove that the inner product is bilinear in both vectors.

2.9. Let x be a vector in \mathbb{R}^n and y be another vector in \mathbb{R}^n.

1. Program both the Gram-Schmidt and orthogonal projection methods.