Problem 1
Let
\[f(\xi_1, \xi_2) = (\xi_1 - 2)^4 + (\xi_1 - 2)^2\xi_2^2 + (\xi_2 + 1)^2. \]

(a) Show that \(f \) has a local minimizer at \(x^* = (2, -1) \).

(b) Carry out one step of the BFGS method with stepsize \(\lambda = 1 \) from \(x_0 = (1, 1) \) and \(B_0 = \nabla^2 f(x^0) \). Compute both \(x_1 \) and \(B_1 \).

Problem 2
Consider the nonlinear least-squares problem:
\[\min(\xi_1^2 - 2\xi_2 + 1)^2 + (2\xi_1\xi_2 - 2)^2 + (\xi_1 - \xi_2)^2. \]

(a) Carry out one step of the Gauss-Newton method with stepsize \(\lambda = 1 \) from \(x_0 = (0, 0) \).

(b) Carry out one step of the Newton method with stepsize \(\lambda = 1 \) from \(x_0 = (0, 0) \).

Problem 3
Let \(\tilde{B} \) be obtained from a positive definite matrix \(B \) and nonzero vectors \(s \) and \(y \) by using the BFGS formula. Show that if \(\tilde{B} \) is positive definite then \(y^T s > 0 \).

Problem 4
Comment: This problem is on the product form of the BFGS formula which is useful for a conjugate direction approach for solving nonlinear problems.

Let \(\tilde{B} \) be obtained from \(B, y, \) and \(s \) (with \(y^T s \neq 0 \)) from the BFGS formula. Let
\[A = \left(I - \frac{sy^T}{y^T s} + \frac{1}{\sqrt{s^T B sy s}} s s^T B \right). \]

Show that \(A^T \tilde{B} A = B \).