Problem 1: Prove that for any prime \(p \) and integer \(k \geq 1 \) it holds that \(\phi(p^k) = (p - 1)p^{k-1} \).

Solution: The integers among \(\mathbb{Z}_{p^k} = \{0, 1, 2, \ldots, p^k - 1\} \), that are not relatively prime with \(p^k \) are precisely those integers that have \(p \) in their prime decompositions, ie that are the multiples of \(p \), which are enumerated \(0 \cdot p, 1 \cdot p, 2 \cdot p, \ldots, (p^{k-1} - 1) \cdot p \); thus there are \(p^{k-1} \) such nonunits. In particular, \(\phi(p^k) = p^k - p^{k-1} = (p - 1)p^{k-1} \).

Problem 2: Write a MATLAB function that performs fast exponentiation. The input consists of positive integer \(n \), \(a \in \mathbb{Z}_n \), and a positive integer power \(k \). The output is \(a^k \mod n \). Be sure to provide nontrivial examples to illustrate that your code is working properly.

Problem 3: Suppose \(p \) and \(q \) are different prime numbers, and let \(n := p \cdot q \). Give a very simple formula for finding \(p \) and \(q \) using only \(n \) and \(\phi(n) \). Explain why this illustrates that there may not be an efficient algorithm for computing \(\phi(n) \) (if you are only given the number \(n \) and nothing more).

Solution: We have here that \(\phi(n) = (p - 1)(q - 1) = pq - p - q + 1 = n - p - q + 1 = n - p - \frac{n}{p} + 1 \), which we multiply by \(p \) to obtain \(\phi(n)p = np - p^2 - n + p \), which simplifies to the quadratic equation \(p^2 + (\phi(n) - n - 1)p + n = 0 \). By the quadratic formula, \(p \) is either \(\frac{-(\phi(n) - n - 1) + \sqrt{(\phi(n) - n - 1)^2 - 4n}}{2} \) or \(\frac{-(\phi(n) - n - 1) - \sqrt{(\phi(n) - n - 1)^2 - 4n}}{2} \), and \(q \) is the other of these two. Thus, If Eve has an efficient algorithm for computing \(\phi(n) \) from \(n \) then she can efficiently factor \(n \), and thus there probably isn’t an efficient algorithm to compute \(\phi(n) \) from \(n \), because there probably isn’t an efficient algorithm for factoring \(n \).

Problem 4: Suppose Bob has public RSA key \((n, e) = (8439833, 5711029)\) and Alice sends him the ciphertext \(c = 62472 \) encrypted with Bob’s key. Find the corresponding plaintext \(m \).

Solution: Because \(n = 8439833 \) isn’t too big, MATLAB factors it as \(n = pq \) for \(p = 2803 \) and \(q = 3011 \), where \(p \) and \(q \) are prime. Now, since \(e = 5711029 \) is public, Eve can use the
Extended Euclid Algorithm to find \(d = e^{-1} \mod (p-1)(q-1) \); indeed, she would quickly obtain \(d = 9769 \). With this, Even can obtain the plaintext \(m \) by computing \(m = c^d \mod n \), which is \(m = 2345678 \).

Problem 5: Write a MATLAB program whose input consists of two primes \(p, q \equiv 3 \mod 4 \) and \(c \in \mathbb{Z}_{pq} \). The output should be the four square roots of \(c \mod pq \), if they exist (in other words, your program does Rabin decryption). Use your code to find the four square roots of \(6245706 \mod 9353881 \). (Hint: The number 9353881 isn’t too big for MATLAB to factor; use the command “factor.” Also, the command “format rat” will ensure that all data is displayed and stored as integers.)

Solution: MATLAB can factor \(n = 9353881 \) into \(n = pq \) where \(p = 2999 \) and \(q = 3119 \). Then, using the square root script that you write, we obtain the four square roots \(1443540, 8119314, 1234567, \) and \(7910341 \).

Problem 6: Let \(p \) and \(q \) be primes such that \(q = 2p + 1 \), and consider any \(a \in \mathbb{Z}_q \) such that \(a \not\equiv 0, 1, -1 \mod q \). Prove that \(a \) is primitive mod \(q \) if and only if \(a^p = -1 \mod q \).

Solution: Note that \(\phi(q) = q-1 = 2p \) only has positive divisors 1, 2, \(p \), or 2\(p \) by Lagrange’s Theorem. What it would mean that \(a \) has order 1 is that \(a^1 = 1 \mod q \), ie that \(a = 1 \), and what it would mean that \(a \) has order 2 is that \(a^2 = 1 \mod q \), but since there can be only two square roots of any number mod any prime, the square roots of 1 mod \(q \) are \(1 \mod q \) and \(-1 \mod q \), hence \(a = -1 \mod q \). Thus, excluding \(a \) being 0, 1 or \(-1 \mod q \), either the order of \(a \) is \(p \), in which case \(a^p = 1 \mod q \), or else the order of \(a \) is \(2p \) (ie \(a \) is a primitive root), in which case \(a^p \mod q \) is the non-one square root of \(a^{2p} = 1 \mod q \), ie \(a^p = -1 \mod q \). Thus, indeed, if \(a \) is not 0, 1, \(-1 \mod q \) then \(a^p \mod q \) is \(-1 \) or 1 according as \(a \) is a primitive root or not. [Important note: This gives us an efficient way to test whether or not a given \(a \in \mathbb{Z}_q^* \) is primitive, since fast exponentiation is efficient. A brute force test for primitivity which checks all of the powers of \(a \) would not be efficient.]