Problem 1: If \(m \) and \(n \) are integers not both zero, we define their least common multiple \(\text{lcm}(m,n) \) to be the smallest positive integer \(z \) such that \(m|z \) and \(n|z \). Describe how to efficiently compute \(\text{lcm}(m,n) \), and explain why this works and why this is efficient. (Hint: Since there is no known efficient algorithm for factoring integers, there isn’t a known efficient algorithm for computing prime decompositions \(n = \prod p_i^{a_i} \) and \(m = \prod p_i^{b_i} \). Nonetheless, such decompositions exist. Consider a formula for \(\text{lcm}(m,n) \) expressed through the prime decompositions of \(m \) and \(n \): relate this to a formula for \(\gcd(m,n) \) and for \(mn \).)

Solution: Let \(p_1, p_2, p_3 \ldots \) denote the sequence of all prime numbers. Suppose the prime factorization of \(m \) is \(m = \prod_{i=1}^{\infty} p_i^{a_i} \) for the nonnegative integers \(a_1, a_2, a_3, \ldots \) (only finitely many of which are nonzero) and suppose the prime factorization of \(n \) is \(n = \prod_{i=1}^{\infty} p_i^{b_i} \) for the nonnegative integers \(b_1, b_2, b_3, \ldots \) (only finitely many of which are nonzero). Recall that \(\gcd(m,n) = \prod_{i=1}^{\infty} p_i^{\min\{a_i,b_i\}} \), and it is clear that \(mn = \prod_{i=1}^{\infty} p_i^{a_i+b_i} \). Now, any integer \(z = \prod_{i=1}^{\infty} p_i^{c_i} \) is a multiple of \(m \) if and only if \(c_i \geq a_i \) for all \(i \), and is a multiple of \(n \) if and only if \(c_i \geq b_i \) for all \(i \), thus \(\text{lcm}(m,n) = \prod_{i=1}^{\infty} p_i^{\max\{a_i,b_i\}} \).

From this we see that \(\text{lcm}(m,n) = mn/\gcd(m,n) \), and we can find \(\gcd(m,n) \) efficiently via Euclid Algorithm, thus \(\text{lcm}(m,n) \) is efficiently computed as \(mn/\gcd(m,n) \).

Problem 2: Suppose \(c \) and \(d \) are positive integers. Show that if \(c^{1/d} \) is not an integer then it is irrational, i.e. it can’t be expressed as \(c^{1/d} = \frac{m}{n} \) for any integers \(m \) and \(n \). (For example, \(\sqrt{2} \) is irrational.) Hint: First characterize when an integer \(z \) is the \(d \)th power of some integer, using its prime decomposition \(z = \prod p_i^{\alpha_i} \).

Solution: Let \(p_1, p_2, p_3 \ldots \) denote the sequence of all prime numbers, let \(d \) be a positive integer. By the uniqueness of prime factorizations, any positive integer \(z \), say with prime factorization \(z = \prod_{i=1}^{\infty} p_i^{\delta_i} \), is a \(d \)th power of an integer if and only if \(d \) divides \(\delta_i \) for all \(i \). Now, suppose \(c, m, n \) are positive integers such that \(c^{1/d} = \frac{m}{n} \), and say that \(m = \prod_{i=1}^{\infty} p_i^{\alpha_i} \) and \(n = \prod_{i=1}^{\infty} p_i^{\beta_i} \), and \(c = \prod_{i=1}^{\infty} p_i^{\gamma_i} \) are each prime factorizations. Then, taking \(d \)th powers, we obtain \(c = \frac{m^d}{n^d} \), i.e. \(c \cdot n^d = m^d \), i.e. \(\prod_{i=1}^{\infty} p_i^{(d\beta_i + \gamma_i)} = \prod_{i=1}^{\infty} p_i^{d\alpha_i} \).

Thus, for all \(i \), \(d \) divides \(\gamma_i = d \cdot \alpha_i - d \cdot \beta_i \), hence \(c \) is a \(d \)th power of an integer.

Problem 3: A continued fraction of a rational number \(x \) between 0 and 1 is an expression of \(x \) as

\[
x = \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \cdots + \frac{1}{q_j + \cdots}}}}
\]

where \(j \) is a positive integer, and \(q_1, q_2, \ldots q_j \) are positive integers. (Actually, there is a \(q_0 \) omitted for simplicity, as we assume for simplicity that \(x \) is between 0 and 1.) For example, the continued fraction
for \(\frac{1002}{2501} \) is

\[
\frac{1002}{2501} = 2 + \frac{1}{62 + \frac{1}{5}}.
\]

Explain and justify how to use the Euclid Algorithm to find a continued fraction. (Hint: If \(a, b, q, r \) are as given in the statement of the Division Lemma, simplify \(\frac{1}{q + r} \).) Use your method to compute the continued fraction of \(\frac{1337}{3501} \).

Solution: Suppose \(a, b, q, r \) are integers such that \(a = qb + r \), as in the division lemma. Note that

\[
\frac{1}{q + \frac{r}{b}} = \frac{1}{\frac{q + r}{b}} = \frac{b}{a}.
\]

Suppose \(m \) and \(n \) are integers such that \(n > m > 0 \), and we are interested in a continued fraction for \(\frac{m}{n} \).

Apply the Euclid algorithm to \(a_0 := n \) and \(a_1 := m \), and say the Euclid iterates are \(a_0, a_1, a_2, \ldots, a_{j+1} \) (where \(a_{j+1} = 0 \)) with quotients \(q_1, q_2, q_3, \ldots, q_j \); ie for \(i = 1, 2, \ldots, j \) it holds that \(a_{i-1} = q_ia_i + a_{i+1} \).

Iteratively applying the above,

\[
\frac{m}{n} = \frac{a_1}{a_0} = \frac{1}{q_1 + \frac{a_2}{a_1}} = \frac{1}{q_1 + \frac{1}{q_2 + \frac{a_3}{a_2}}} = \ldots = \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{1}{q_j + \frac{1}{a_{j+1}}}}}}
\]

which is what is desired, since \(a_{j+1} = 0 \).

The continued fraction for \(\frac{1337}{3501} \) is

\[
\frac{1337}{3501} = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{4}}}}}}}}}
\]