Homework 3, 553.362 Optimization, Spring 2019

You may discuss ideas for the homework with other students in the class, but when it comes
time to write up your solutions you must do it alone, and your write-up must exactly reflect your
understanding. You may not consult other textbooks, online resources, nor any existing solutions.

Problem 1: Consider a league in the Minor League Baseball system with 14 teams and 42 slots
for play over the season. Say that for each slot $i = 1, 2, \ldots , 42$, team $j = 1, 2, \ldots , 14$, and stadium
$k = 1, 2, \ldots , 14$, the variable x_{ijk} is 1 or 0 according as team j is in stadium k during slot i.
Write equations to enforce that no team may play against any other team in back-to-back slots.
(See, for example, if team 11 visits team 12 in the 9th slot then team 11 can’t visit team 12 in
the 10th slot, nor can team 12 visit team 11 in the 10th slot). This must be accomplished by
creating exactly 3731 equations. Also, write equations to enforce that any team cannot revisit
any other team until at least 3 slots have passed in between visits. (So, for example, if team 11
visits team 12 in the 30th slot then team 11 can’t revisit team 12 until the 34th slot).

Problem 2: Recall that when we were discussing controlling distance travelled in baseball league
scheduling, we needed to work with a product $x \cdot y$, where x and y were each binary variables.
Unfortunately, this introduced a nonlinearity. What we proposed to do was to created an artificial
binary variable z to take the place of $x \cdot y$, with the additional constraint that $x + y - z \leq 1$. Also
recall that we were concerned (due to some specific circumstances) that z might take the value 1
even when not both x and y are 1. Your task now is to add linear constraint(s) which will force
z to be 1 if and only if both x and y are 1.

Problem 3: Suppose that G and H are graphs on n vertices, with respective adjacency matrices
A and B. Express the graph matching problem as $\min c^T x$ s.t. $Mx = b, x \in \{0, 1\}^{3n^2}$. Specifically,
write down M, b, and c in terms of A, B, identity matrices, matrices of 0s, vectors of 1s, vectors
of 0s, and Kroenecker products \otimes.

Problem 4: Consider the following experiment: Generate a random 9-by-9 matrix of random
integers from $\{1, 2, 3, \ldots , 9\}$; for example, in MATLAB use command $M=\text{ceil}(9*\text{rand}(9,9))$.
Next, use your code from last week to find the Sudoku table MM that agrees with M in as many
places as possible. Record the number of positions where MM does not agree with M.
Repeat the above experiment 10,000 times, and report the mean and standard deviation of the
number of disagreements between M and MM, over these 10,000 experiments.