Problem 1: (10 points) In a particular semester, a university offers classes 1, 2, ..., n which are taught at different times. For each pair of classes i, i', denote by $d_{i,i'}$ the number of students who are enrolled in both classes. There are n sequential final exam slots 1, 2, ..., n.

Formulate as an integer program the problem of bijectively assigning the classes to final exam slots so as to minimize the number of instances where a student has two consecutive exams. (That is, define the appropriate variables, and write out the constraints and objective function; use summation notation and any appropriate quantifiers.)

Solution: For each $i = 1, 2, ..., n$ and $j = 1, 2, ..., n$, there is a binary variable $x_{i,j}$; value 1 would signal that class i is assigned to the jth final exam slot. Also, for each $i = 1, 2, ..., n$ and each $i' = 1, 2, ..., n$ such that $i \neq i'$, and each $j = 1, 2, ..., n-1$, there is a binary variable $y_{i,i',j}$; value 1 would signal that class i is assigned to the jth final exam slot and class i' is assigned to the $j+1$th final exam slot. With these variables, the problem is:

$$\text{minimize } \sum_{i=1}^{n} \sum_{j=1,j \neq i}^{n-1} d_{i,i'} y_{i,i',j}$$

s.t. for all $i = 1, 2, ..., n$ it holds that $\sum_{j=1}^{n} x_{i,j} = 1$,

and for all $j = 1, 2, ..., n$ it holds that $\sum_{i=1}^{n} x_{i,j} = 1$,

and for all $i = 1, 2, ..., n$, all $i' = 1, 2, ..., n$ such that $i' \neq i$,

all $j = 1, 2, ..., n-1$ it holds that $x_{i,j} + x_{i',j+1} - y_{i,i',j} \leq 1$.

Problem 2: (10 points) Consider the program (P) minimize $f(x)$ such that $\vec{g}(x) \leq \vec{0}$ and $x \in S$, where $S \subseteq \mathbb{R}^n$ and $f, g_1, g_2, \ldots, g_m : S \rightarrow \mathbb{R}$. Consider any $\vec{x} \in S$ and $\vec{\lambda} \geq \vec{0}_m$. Write down three equivalent ways to say that $\vec{x}, \vec{\lambda}$ is a saddle point of the Lagrangian—no proofs necessary here.

Solution:

$$L(\vec{x}, \lambda) \leq L(\vec{x}, \vec{\lambda}) \leq L(x, \vec{\lambda})$$ for all $x \in S$, $\lambda \geq \vec{0}_m$

$$L(\vec{x}, \vec{\lambda}) \leq L(x, \vec{\lambda})$$ for all $x \in S$, and $\vec{g}(\vec{x}) \leq \vec{0}_m$, and $\vec{\lambda}^T \vec{g}(\vec{x}) = 0$

\vec{x} is optimal in (P), $\vec{\lambda}$ is optimal in the dual of P, and there is no duality gap.
Problem 3: (10 points) Consider a simple graph $G = (V, E)$, where $V = \{v_1, v_2, \ldots, v_n\}$ and $E = \{e_1, e_2, \ldots, e_m\}$, and suppose that $A \in \{0, 1\}^{m \times n}$ is the incidence matrix; that is, for all i, j, A_{ij} is 1 or 0 according as e_i has endpoint v_j or not.

a) Suppose $x \in \{0, 1\}^n$ is an indicator vector for a subset $S \subseteq V$. For any i, give a combinatorial interpretation for $(Ax)_i$. (Short answer.)

b) Suppose $y \in \{0, 1\}^m$ is an indicator vector for a subset $F \subseteq E$. For any i, give a combinatorial interpretation for $(A^Ty)_i$. (Short answer.)

c) Give a combinatorial interpretation for the integer program (IP) minimize $\mathbf{1}^T x$ s.t. $Ax \geq \mathbf{1}_m$, $x \in \{0, 1\}^n$. (Short answer.)

d) Give a combinatorial interpretation for the dual integer program (DP) maximize $\mathbf{1}^T y$ s.t. $A^Ty \leq \mathbf{1}_n$, $y \in \{0, 1\}^m$. (Short answer.)

e) Order IP, DP and their relaxations by optimal objective function value (short answer).

f) Give a class of graphs where all of the programs IP, DP, and their relaxations have the same objective function value, and explain how you know this.

Solution:

a) The number of vertices of S that are endpoints of edge e_i.

b) The number of edges of F that saturate the vertex v_i.

c) Minimum cardinality vertex cover for G; i.e. $\beta(G)$.

d) Maximum cardinality matching for G; i.e. $\alpha'(G)$.

e) Let (LP) denote the relaxation of (IP), let (DLP) denote the relaxation of (DP). The optimal objective functions are ordered $\text{oofv(DP)} \leq \text{oofv(DLP)} = \text{oofv(LP)} \leq \text{oofv(IP)}$.

f) For bipartite graphs we have the Konig-Egervary Theorem which asserts that $\alpha'(G) = \beta(G)$, so $\text{oofv(DP)} = \text{oofv(IP)}$, hence the inequalities from part e all become equalities.

Problem 4: (10 points) Consider the nonlinear program (P) min $f(x)$ s.t. $\bar{g}(x) \leq \bar{0}$, $x \in S$. Prove that (P) is equivalent to $\inf_{x \in S} \sup_{\lambda \geq 0} L(x, \lambda)$.

Solution: $\inf_{x \in S} \sup_{\lambda \geq 0} L(x, \lambda)$ can be expressed $\inf_{x \in S} \phi(x)$ where $\phi(x) := \sup_{\lambda \geq 0} f(x) + \lambda^T \bar{g}(x)$. If x satisfies $\bar{g}(x) \leq \bar{0}$ then for any $\lambda \geq \bar{0}$ it holds that $\lambda^T \bar{g}(x) \leq 0$, so an optimal $\lambda \geq \bar{0}$ for the supremum is $\bar{0}$, hence $\phi(x) = f(x)$. On the other hand, if $\bar{g}(x) \not\leq \bar{0}$, say $g_i(x) > 0$, then letting $\lambda_i \to \infty$ (while the rest of λ is 0) yields $\phi(x) = \infty$. Thus

$$\inf_{x \in S} \sup_{\lambda \geq 0} L(x, \lambda) \equiv \inf_{x \in S} \left\{ \begin{array}{ll} f(x) & \text{if } \bar{g}(x) \leq \bar{0} \\ \infty & \text{if } \bar{g}(x) \not\leq \bar{0} \end{array} \right\} \equiv \min f(x) \text{ s.t. } \bar{g}(x) \leq \bar{0}, x \in S$$
Problem 5: (10 points) Consider the linear program \(\min c^T x \) such that \(Ax \geq b, \ x \geq 0 \), where \(A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ c \in \mathbb{R}^n \), the variables \(x \in \mathbb{R}^n \), and any of the constraints might be active. Write down and simplify what it means for \(\tilde{x}, \tilde{\lambda} \) to be a KKT point and derive from it a condition for optimality that we encountered when studying linear programming. (Hint: You should first express the problem in the form we use for nonlinear programs.)

(See lecture notes at end of exam material)

Problem 6: (10 points) Suppose \(A \in \mathbb{R}^{n \times n} \) is symmetric positive definite, \(b \in \mathbb{R}^n \) is nonzero, \(c \in \mathbb{R} \) is positive, and the variables \(x \in \mathbb{R}^n \). Consider (P): \(\min \frac{1}{2} x^T Ax \) s.t. \(b^T x + c \leq 0 \). Write the Lagrangian dual (DP) \(\sup_{\lambda \geq 0} \theta(\lambda) \); your task is to simplify \(\theta \) as much as possible.

Solution: The Lagrangian function is \(L(x, \lambda) = \frac{1}{2} x^T Ax + \lambda (b^T x + c) \) for all \(x \in \mathbb{R}^n, \ \lambda \geq 0 \).

(DP) is \(\sup_{\lambda \geq 0} \theta(\lambda) \) where, for any fixed \(\lambda \geq 0 \), we have that \(\theta(\lambda) := \inf_{x \in \mathbb{R}^n} \frac{1}{2} x^T Ax + \lambda (b^T x + c) \).

This unconstrained minimization is easy to solve, since the objective function is convex (since the Hessian is always \(A \), which is positive definite), so we set its gradient \(Ax + \lambda b \) to the zero vector and solve for \(x \), yielding for this minimization problem the global minimum \(x = -\lambda A^{-1} b \) (note that \(A \) is positive definite and thus invertible), which has objective function value \(\frac{\lambda^2}{2} b^T A^{-1} b - \lambda^2 b^T A^{-1} b + \lambda c \).

We simplify this to obtain \(\theta(\lambda) = -\frac{\lambda^2}{2} b^T A^{-1} b + \lambda c \). Thus (DP) may be expressed as the simple maximization problem \(\sup_{\lambda \geq 0} -\frac{\lambda^2}{2} b^T A^{-1} b + \lambda c \).
This page will not be graded.