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ABSTRACT

An (upward) skip-free Markov chain with the set of nonnegative integers as state
space is a chain for which upward jumps may be only of unit size; there is no restriction
on downward jumps. In a 1987 paper, Brown and Shao determined, for an irreducible
continuous-time skip-free chain and any d, the passage time distribution from state 0
to state d. When the nonzero eigenvalues νj of the generator on {0, . . . , d}, with d
made absorbing, are all real, their result states that the passage time is distributed as
the sum of d independent exponential random variables with rates νj . We give another
proof of their theorem. In the case of birth-and-death chains, our proof leads to an
explicit representation of the passage time as a sum of independent exponential random
variables. Diaconis and Miclo recently obtained the first such representation, but our
construction is much simpler.

We obtain similar (and new) results for a fastest strong stationary time T of an er-
godic continuous-time skip-free chain with stochastically monotone time-reversal started
in state 0, and we also obtain discrete-time analogs of all our results.

In the paper’s final section we present extensions of our results to more general
chains.
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1 Introduction and summary

An (upward) skip-free Markov chain on the set of nonnegative integers is a chain for
which upward jumps may be only of unit size; there is no restriction on downward jumps.
Brown and Shao [1] determined, for an irreducible continuous-time skip-free chain and
any d, the passage time distribution from state 0 to state d (we have equivalently re-
identified the exponential rates):

Theorem 1.1 ([1]). Consider an irreducible continuous-time skip-free chain Y on the
nonnegative integers with Y (0) = 0. Given d, let X (with state space {0, . . . , d}) be
obtained from Y by making d an absorbing state, and let G denote the generator for X.
Then the hitting time of state d (same for X and Y ) has Laplace transform

u 7→
d−1∏
j=0

νj
νj + u

,

where ν0, . . . , νd−1 are the d nonzero eigenvalues of −G (known to have positive real
parts). In particular, if the νj’s are real, then the hitting time distribution is the convo-
lution of Exponential(νj) distributions.

In this paper we give a new proof for Theorem 1.1. In the case of birth-and-death
chains (which are time-reversible and thus have real eigenvalues), the result is often
attributed to Keilson but in fact (consult [3]) dates back at least to Karlin and Mc-
Gregor [9]. Our proof leads in this case to an explicit (sample-path) representation of
the passage time as a sum of independent exponential random variables. Diaconis and
Miclo [3] recently obtained the first such representation for birth-and-death chains, but
our construction is much simpler.

There is an analog for discrete time:

Theorem 1.2. Consider an irreducible discrete-time skip-free chain Y on the nonneg-
ative integers with Y (0) = 0. Given d, let X (with state space {0, . . . , d}) be obtained
from Y by making d an absorbing state, and let P denote the transition matrix for X.
Then the hitting time of state d (same for X and Y ) has probability generating function

u 7→
d−1∏
j=0

[
(1− θj)u
1− θju

]
,

where θ0, . . . , θd−1 are the d non-unit eigenvalues of P . In particular, if every θj is real
and nonnegative, then the hitting time distribution is the convolution of Geometric(1−
θj) distributions.

Remark 1.3. The conclusions of Theorems 1.1 and 1.2 hold for all skip-free chains X
on {0, . . . , d} for which gi,i+1 > 0 (respectively, pi,i+1 > 0) for i = 0, . . . , d− 1. Indeed,
our proofs extend to that case, or one can extend the theorems by a simple perturbation
argument.
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Results similar to Theorems 1.1–1.2 can also be established for fastest strong station-
ary times (consult [2], [4], and [5] for general background, and (3.3) and (3.5) of [5] for
how to check from the generator G of a continuous-time chain whether the chain has the
“monotone likelihood ratio” property, that is, whether its time-reversal is stochastically
monotone):

Theorem 1.4.
(a) Consider an ergodic (equivalently, irreducible) continuous-time skip-free chain X
on the state space {0, . . . , d} with X(0) = 0 and stochastically monotone time-reversal.
Let G denote the generator for X. Then a fastest strong stationary time (SST) for X
has Laplace transform

u 7→
d−1∏
j=0

νj
νj + u

,

where ν0, . . . , νd−1 are the d nonzero eigenvalues of −G (known to have positive real
parts). In particular, if the νj’s are real, then the fastest SST distribution is the convo-
lution of Exponential(νj) distributions.
(b) Consider an ergodic (equivalently, irreducible and aperiodic) discrete-time skip-free
chain X on the state space {0, . . . , d} with X(0) = 0 and stochastically monotone time-
reversal. Let P denote the transition matrix for X. Then a fastest strong stationary
time (SST) for X has probability generating function

u 7→
d−1∏
j=0

[
(1− θj)u
1− θju

]
,

where θ0, . . . , θd−1 are the d non-unit eigenvalues of P . In particular, if every θj is real
and nonnegative, then the fastest SST distribution is the convolution of Geometric(1− θj)
distributions.

Our proofs of Theorems 1.1–1.2 and 1.4 could hardly be simpler in concept. Take
Theorem 1.2, for instance. Let θ0, . . . , θd−1 be ordered arbitrarily. We will exhibit a
matrix Λ, with rows and columns indexed by the state space {0, . . . , d}, having the
following properties:

(i) Λ is lower triangular.

(ii) The rows of Λ sum to unity.

(iii) ΛP = P̂Λ, where P̂ is defined by

p̂ij :=


θi if j = i

1− θi if j = i+ 1
0 otherwise,

(1.1)

for i, j = 0, . . . , d (with θd = 1).
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We will prove that from these three properties follows

P(T ≤ t) = P̂ t(0, d), t = 0, 1, . . . , (1.2)

where T is the absorption time in question. [In fact, all we will need to prove (1.2)
are (iii) and the following two easy consequences of (i)–(ii):

(iv) Λ(0, k) = δ0,k.

(v) Λ(k, d) = 0 if k 6= d.]

In the special case that the θj ’s are real and nonnegative, then Theorem 1.2 follows
immediately from (1.2); the general case will not take too much additional work. More-
over, for birth-and-death chains with nonnegative eigenvalues the proof will reveal how
to identify (i.e., construct) geometric random variables summing to T .

In Section 1 of [6] it was shown how that paper’s main continuous-time theorem
(Theorem 1.1) follows immediately from the main discrete-time theorem (Theorem 1.2).
By the same one-line proof, in the present paper Theorem 1.1 follows immediately from
Theorem 1.2. For this reason we choose not to present a direct proof of Theorem 1.1, but
in the case of birth-and-death chains we will give the explicit construction of independent
exponential random variables summing to the absorption time. For the same reason we
will prove only part (b) of Theorem 1.4.

Here is an outline for the paper. In Section 2 we prove Theorem 1.2, and in Section 3
we give stochastic constructions for Theorems 1.1–1.2 in the special case of birth-and-
death chains. Section 4 is devoted to a proof of Theorem 1.4(b). In Section 5 we present
extensions of our results, including stochastic constructions, to more general chains.

2 Proof of Theorem 1.2

In this section we prove Theorem 1.2, following the outline near the end of Section 1.
Denote the eigenvalues of P , with each distinct eigenvalue listed as many times as its
algebraic multiplicity, by θ0, . . . , θd. We claim that precisely one of these, say θd, equals 1
and that the rest have modulus smaller than 1; how the rest are ordered will for the
majority of our results be irrelevant (we shall take special notice otherwise).

Here is a proof of the simple claim. Let P ′ denote the leading principal d-by-d
submatrix of P . Expanding the determinant of P − θI on the last row, we find that
the d+ 1 eigenvalues of P are θ = 1 together with the d eigenvalues of P ′. But by our
assumptions that pi,i+1 > 0 for t = 0, . . . , d − 1 and d is absorbing, we have (P ′)t → 0
and so (see for example [8, Theorem 5.6.12]) ρ(P ′) < 1.

Let I denote the identity matrix and define

Qk := (1− θ0)−1 · · · (1− θk−1)−1(P − θ0I) · · · (P − θk−1I), k = 0, . . . , d, (2.1)

with the natural convention Q0 := I. Note that

QkP = θkQk + (1− θk)Qk+1, k = 0, . . . , d− 1, (2.2)

and that the rows of each Qk all sum to 1.
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Define
Λ(i, j) := Qi(0, j), i, j = 0, . . . , d. (2.3)

Lemma 2.1. Let P be as in Theorem 1.2. Then the matrix Λ defined at (2.3) enjoys
properties (i)–(iii) listed in Section 1.

Proof. The rows of Λ sum to unity because each of the basic factors (1−θr)−1(P −θrI)
in (2.1) has that property; and since P is skip-free, Λ is lower triangular. Our next
claim is that ΛP = P̂Λ, where P̂ is defined at (1.1). Indeed, equality of kth rows is
clear from (2.2) for k = 0, . . . , d− 1 and from the Cayley–Hamilton theorem for k = d.

Remark 2.2. It is not surprising that the eigenvalues of P line the diagonal of the
upper triangular matrix P̂ , because our Λ is nonsingular and so property (iii) implies
that P and P̂ are similar. To see that the lower triangular matrix Λ is nonsingular,
we check that its diagonal entries are all nonzero. Indeed, for k = 0, . . . , d, we use the
skip-free property of P to calculate:

Λ(k, k) = Qk(0, k) =
p0,1 · · · pk−1,k

(1− θ0) · · · (1− θk−1)
6= 0.

So we have found a matrix Λ satisfying properties (i)–(iii), and properties (iv)–(v)
follow easily from (i)–(ii). Notice that property (iii) immediately extends to

ΛP t = P̂ tΛ, t = 0, 1, . . . . (2.4)

Lemma 2.3. Let P and X, with absorption time T , be as in Theorem 1.2 and let P̂ be
the bidiagonal matrix defined at (1.1). Then (1.2) holds:

P(T ≤ t) = P̂ t(0, d), t = 0, 1, . . . .

Proof. Let Λ be any matrix enjoying properties (iii)–(v) of Section 1; recall that Lemma
2.1 provides such a Λ. We will use Λ to establish the desired result, and the conse-
quence (2.4) of property (iii) will be key.

We consider the (0, d) entry of each side of (2.4). On the left we have

(ΛP t)(0, d) =
∑
k

Λ(0, k)P t(k, d) = P t(0, d) = P(T ≤ t),

where the second equality is immediate from property (iv). On the right we have

(P̂ tΛ)(0, d) =
∑
k

P̂ t(0, k)Λ(k, d) = P̂ t(0, d)Λ(d, d),

where the second equality is immediate from property (v). So all that remains is to
establish that Λ(d, d) = 1.

We do this by passing to the limit as t→∞ in our now-established equation

P(T ≤ t) = P̂ t(0, d)Λ(d, d).
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The limit on the left is, of course, 1. Moreover, we claim that P̂ t(0, d) → 1, and then
the proof of the lemma will be complete. The claim is probabilistically obvious when
the eigenvalues are all real and nonnegative. To see the claim in general, write P̂ as the
bordered matrix

P̂ =
[
A b
0 1

]
by breaking off the last row and column. The matrix A has spectral radius ρ(A) < 1;
and because the rows of P̂ sum to unity, we have b = (I − A)1, where 1 denotes the
vector of d ones. In this notation we find

P̂ t =
[
At (I +A+ · · ·+At−1)b
0 1

]
→
[

0 (I −A)−1b
0 1

]
,

which is a matrix with 1s throughout the last column and 0s elsewhere. In particular,
P̂ t(0, d)→ 1.

As mentioned in Section 1, Lemma 2.3 is clearly all that is needed to prove Theo-
rem 1.2 when the eigenvalues of P are nonnegative real numbers. In general we proceed
as follows. From Lemma 2.3 it follows that T has probability generating function

EuT = (1− u) (I − uP̂ )−1(0, d), |u| < 1. (2.5)

But the simple form of P̂ makes it an easy matter to invert 1−uP̂ explicitly: the inverse
is upper triangular, with

(I − uP̂ )−1(i, j) =
(1− θi) · · · (1− θj−1)uj−i

(1− θiu) · · · (1− θju)
, 0 ≤ i ≤ j ≤ d. (2.6)

Taking i = 0 and j = d and combining (2.5)–(2.6) gives Theorem 1.2.

3 Stochastic constructions for Theorems 1.1 and 1.2

In this section we consider Theorems 1.1 and 1.2 again in the case of a birth-and-
death chain. For such a chain, the eigenvalues νj or θj are all real; this can be seen
by perturbing (by an arbitrarily small amount) to get an ergodic generator or kernel,
which is time-reversible and thus diagonally similar to a symmetric matrix. We show
how the proof in Section 2 of Theorem 1.2 yields an explicit construction of independent
geometric random variables summing to the hitting time in the case of a birth-and-
death chain having nonnegative eigenvalues (for which it is sufficient that the holding
probabilities satisfy pii ≥ 1/2 for all i). We also exhibit an analogous representation of
the hitting time in Theorem 1.1 as a sum of independent exponential random variables
in the case of a continuous-time birth-and-death chain.

We begin with the discrete case. Returning to (2.1), we now suppose that P is
a discrete-time birth-and-death kernel with nonnegative eigenvalues θj ordered so that
0 ≤ θ0 ≤ · · · ≤ θd−1 < θd = 1. The polynomials (P −θ0I) · · · (P −θk−1I) in P appearing
at (2.1) are called spectral polynomials. We claim that the spectral polynomials are
all nonnegative matrices, that is, that the matrices Qk at (2.1) are stochastic; this
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follows immediately by perturbation from Lemma 4.1 in [6] (which concerns ergodic
birth-and-death kernels and is in turn an immediate consequence of [10, Theorem 3.2].
Reversibility of P plays a key role.) Thus the matrix Λ defined at (2.3) is stochastic,
as of course is the pure-birth kernel P̂ defined at (1.1). For stochastic P , P̂ , and Λ,
the identity ΛP t = P̂ tΛ at (2.4) is read as “the semigroups (P t)t≥0 and (P̂ t)t≥0 are
intertwined by the link Λ”.

Whenever we have such an intertwining and (to be specific) X0 = 0, Section 2.4 of [2]
shows one way to construct explicitly, from X and independent randomness, another
Markov chain, say X̂, with kernel P̂ such that

L(Xt | X̂0, . . . , X̂t) = Λ(X̂t, ·) for all t. (3.1)

In particular, since the link Λ is lower triangular [by Lemma 2.1(i)] and Λ(d, d) = 1
(recall the proof of Lemma 2.3), so that Λ(d, ·) is unit mass at d, it follows that X̂
and X (and also Y of Theorem 1.2) have the same absorption time T . The discussion
in [2] is used in that paper in the case that P is ergodic and P̂ is absorbing, but it
applies equally well to any intertwining. Once we have built the pure birth chain X̂, the
independent geometric random variables summing to T are simply the waiting times
between successive births in X̂.

Here is our construction of X̂; it has the same form (but with Λ̂ changed to Λ) as
in Section 4.1 of [6], which applied to a different setting, and we repeat it here for the
reader’s convenience. The chain X starts with X0 = 0 and we set X̂0 = 0. Inductively,
we will have Λ(X̂t, Xt) > 0 (and so Xt ≤ X̂t) at all times t. The value we construct for
X̂t depends only on the values of X̂t−1 and Xt and independent randomness. Indeed,
given X̂t−1 = x̂ and Xt = y, if y ≤ x̂ then our construction sets X̂t = x̂ + 1 with
probability

P̂ (x̂, x̂+ 1)Λ(x̂+ 1, y)

(P̂Λ)(x̂, y)
=

(1− θx̂)Λ(x̂+ 1, y)
θx̂Λ(x̂, y) + (1− θx̂)Λ(x̂+ 1, y)

=
(1− θx̂)Qx̂+1(0, y)

(Qx̂P )(0, y)
(3.2)

and X̂t = x̂ with the complementary probability; if y = x̂ + 1 (which is the only other
possibility, since y = Xt ≤ Xt−1 + 1 ≤ x̂+ 1 by induction), then we set X̂t = x̂+ 1 with
certainty.

Remark 3.1. (a) By (3.1) and the lower-triangularity of Λ, our construction satisfies
Xt ≤ X̂t for all t. Thus, among all discrete-time birth-and-death chains on {0, . . . , d}
started at 0 and with absorbing state d and given nonnegative eigenvalues 0 ≤ θ0 ≤ θ1 ≤
· · · ≤ θd−1 < θd = 1, the pure-birth “spectral” kernel P̂ defined at (1.1) is stochastically
maximal at every epoch t.

(b) In the general setting of Theorem 1.2, we do not know any broad class of examples
other than the birth-and-death chains we have just treated for which the eigenvalues
are nonnegative real numbers and the spectral polynomials are nonnegative matrices.
Nevertheless, the stochastic construction of the preceding paragraph applies verbatim
to all such chains.

For continuous-time birth-and-death chains, and more generally for continuous-time
skip-free chains with real eigenvalues and generator G having nonnegative spectral poly-
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nomials
(G+ ν0I) · · · (G+ νk−1I), k = 0, . . . , d,

there is an analogous construction. It takes a bit more effort to describe than for
discrete-time chains, so we refer the reader to Section 5.1 of [6], where again Λ̂ there is
changed to Λ here, for details. Briefly, if the bivariate chain (X̂,X) is in state (x̂, x) at
a given jump time, then we construct an exponential random variable with rate

r = νx̂Λ(x̂+ 1, x)/Λ(x̂, x).

If X jumps before the lifetime of this exponential expires, then X̂ holds unless X jumps
to x̂+ 1, in which case X̂ also jumps to x̂+ 1. But if the exponential expires first, then
at that expiration time X holds but X̂ jumps to x̂+ 1.

Remark 3.2. Among all continuous-time birth-and-death chains on {0, . . . , d} started
at 0 and with absorbing state d and given eigenvalues ν0 ≥ ν1 ≥ · · · ≥ νd−1 > νd = 0
for −G, the pure-birth “spectral” chain with birth rate νi at state i for i = 0, . . . , d is
stochastically maximal at every epoch t.

4 Proof of Theorem 1.4(b)

In this section we prove Theorem 1.4(b). The proof is quite similar to that of Theo-
rem 1.2, so we shall be brief. Denote the eigenvalues of P by θ0, . . . , θd. Since we assume
that P is ergodic, precisely one of these, say θd, equals 1 and the rest have modulus
smaller than 1.

Define the matrices Qk as at (2.1) [so that (2.2) holds] and define Λ as at (2.3). Then
Lemma 2.1 holds for P of Theorem 1.4(b) by the same proof, as do properties (iv)–(v)
of Section 1 and the relation (2.4). As we will show next, Lemma 2.3 also holds in
the present setting, and then the same argument as in the final paragraph of Section 2
completes the proof of Theorem 1.4(b).

Lemma 4.1. Let P and X, with fastest strong stationary time T , be as in Theo-
rem 1.4(b) and let P̂ be the bidiagonal matrix defined at (1.1), where θ0, . . . , θd−1 are
the non-unit eigenvalues of P . Then

P(T ≤ t) = P̂ t(0, d), t = 0, 1, . . . .

Proof. As in the proof of Lemma 2.3, the key is the intertwining relation

ΛP t = P̂ tΛ, t = 0, 1, . . . , (4.1)

together with properties (iv)–(v) of Section 1. We consider the (0, d) entries in (4.1).
On the left we have

(ΛP t)(0, d) =
∑
k

Λ(0, k)P t(k, d) = P t(0, d) = P(T ≤ t)π(d), (4.2)

where π is the stationary distribution for P . We explain how to obtain the final equality.
By the assumption that the time-reversal (call it P̃ ) of P is stochastically monotone,
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the ratio P t(0, x)/π(x) = P̃ t(x, 0)/π(0) is minimized by x = d, with minimum value (by
definition) 1− s(t), where s(t) is the so-called separation from stationarity for X. But,
as is well known, a fastest strong stationary time T for X satisfies

P(T ≤ t) = 1− s(t) for all t.

On the right at (4.1) we have

(P̂ tΛ)(0, d) =
∑
k

P̂ t(0, k)Λ(k, d) = P̂ t(0, d)Λ(d, d). (4.3)

Now equate (4.2) and (4.3) and pass to the limit as t→∞. On the left, P(T ≤ t)→ 1
(by ergodicity of X); on the right, P̂ t(0, d) → 1 by the argument presented in the
final paragraph of the proof of Lemma 2.3. So Λ(d, d) = π(d), and now once again
equating (4.2) and (4.3) and canceling the factor π(d) > 0 gives the desired result.

Stochastic constructions for Theorem 1.4 have already been given for birth-and-
death chains, in discrete time with nonnegative eigenvalues and in continuous time,
in Section 4.1 (respectively, Section 5.1) in [6]. The constructions extend verbatim
to all skip-free chains with real (and, in discrete time, nonnegative) eigenvalues and
nonnegative spectral polynomials.

5 General chains

Our proof in Section 2 of the central Theorem 1.2 for the absorption time of a discrete-
time skip-free chain rested on the construction of a matrix Λ having the properties
(i)–(iii) listed in Section 1. The question we wish to address in this section are:

(a) Can Theorem 1.2 be extended to general absorbing chains?

(b) Is the spectral-polynomials construction of Λ inevitable? That is, is the matrix Λ
uniquely determined by the properties (i)–(iii) listed in Section 1?

(c) If the eigenvalues and spectral polynomials of a general absorbing chain are all
nonnegative, can the stochastic construction for Theorem 1.2 be extended?

As we shall see, the answer to each of these questions is yes. Question (b) arises
naturally because (switching to continuous time and limiting attention to birth-and-
death chains for the moment, since that is the setting of [3]) the proofs of Theorem 1.1
both of Diaconis and Miclo [3] and of the present paper rely on construction of a link Λ
such that ΛG = ĜΛ, where Ĝ (the analogue of P̂ in continuous time) is the pure-birth
“spectral” generator described in our Remark 3.2. The two methods of construction are
strikingly different, so it is interesting that the end-product Λ is the same.

All three questions can be addressed in the following setting generalizing that of The-
orem 1.2. (We shall subsequently call this “the general setting”.) Consider a discrete-
time Markov chain X with state space {0, . . . , d} and arbitrary initial distribution m0

(regarded as a row vector in later calculations) and transition matrix P . Assume that
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state d is absorbing and accessible from each other state. (There is no loss of generality
in restricting the absorbing set to be a singleton.) Let θ0, . . . , θd−1 be the d non-unit
eigenvalues of P (in fixed but arbitrary order—except where we require the nonnega-
tivity of spectral polynomials, in which case we use nondecreasing order), let θd = 1,
and let P̂ be defined by (1.1). All square matrices we consider have rows and columns
indexed by the state space {0, . . . , d}. Let Q0, . . . , Qd be the normalized spectral poly-
nomials defined at (2.1).

Questions (a) and (b) are answered in Section 5.1 (see Lemma 5.1 and Theorem 5.2
respectively); question (c), in Section 5.2.

5.1 Absorption times for general chains and the inevitability of spec-
tral polynomials

Our first result of this subsection demonstrates the inevitable use of spectral polynomials
in the construction of Λ, even in the present general setting, provided λ0 = m0.

Lemma 5.1. The unique matrix Λ (with rows denoted by λ0, . . . , λd) satisfying the two
conditions

m0 = λ0 and ΛP = P̂Λ (5.1)

is given by
λi = m0Qi, i = 0, . . . , d. (5.2)

Proof. It is easy to check, as in the proof of Lemma 2.1, that the choice (5.2) satis-
fies (5.1). Conversely, the ith row of ΛP = P̂Λ (i = 0, . . . , d− 1) requires

λiP = θiλi + (1− θi)λi+1, i.e., λi+1 = λi
[
(1− θi)−1(P − θiI)

]
,

and so (by induction) (5.1) implies (5.2).

Our next result (Theorem 5.2), the main result of this section, greatly generalizes
Theorem 1.2 by providing a tidy representation of the absorption-time distribution in
the general setting. For the purposes of this result, we use the conventions that an
empty sum vanishes and that Λ(−1, d) := 0 and Λ(d + 1, d) := 1. We also use the
notation

ak := Λ(k, d)− Λ(k − 1, d), k = 0, . . . , d+ 1. (5.3)

Observe that these ak’s sum to unity, and in the proof of Theorem 5.2 we show that
ad+1 always vanishes. Moreover, if the spectral polynomials happen to be nonnegative,
it is easily verified that a := (a0, . . . , ad+1) has real and nonnegative entries and so is
a probability mass function. Finally, if the eigenvalues θi are all real and nonnegative,
then for k = 0, . . . , d we let G(θ0, . . . , θk−1) denote the convolution of geometric distri-
butions with respective success probabilities 1− θ0, . . . , 1− θk−1; we utilize the natural
conventions here that this distribution is concentrated at 0 when k = 0.

Theorem 5.2. In the above general setting and notation, in particular with P̂ defined
at (1.1), Λ defined as in Lemma 5.1 at (5.2), and ak defined at (5.3), the absorption
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time T satisfies

P(T ≤ t) =
d∑

k=0

ak

d∑
j=k

P̂ t(0, j), t = 0, 1, 2, . . . , (5.4)

with probability generating function

EuT =
d∑

k=0

ak

k−1∏
j=0

[
(1− θj)u
1− θju

]
. (5.5)

In particular, if the eigenvalues θi are all nonnegative real numbers and the spectral
polynomials in P are all nonnegative matrices, then T is distributed as the a-mixture∑d

k=0 ak G(θ0, . . . , θk−1) of the convolution distributions G(θ0, . . . , θk−1), k = 0, . . . , d.

Proof. Lemma 5.1 is the key. Readily generalizing the proof of Lemma 2.3 and then
using summation by parts, one finds

P(T ≤ t) =
d∑
j=0

P̂ t(0, j)Λ(j, d) =
d∑

k=0

ak

d∑
j=k

P̂ t(0, j).

As shown in the proof of Lemma 2.3, P̂ t(0, j)→ δd, j as t→∞; thus 1 =
∑d

k=0 ak and
so ad+1 = 0. Equation (5.4) is all that is needed to establish (5.5) when the eigenvalues
of P are nonnegative real numbers; in general one can use (2.6) (we omit the routine
details).

Remark 5.3. (a) If the chain is upward skip-free and m0 = δ0, then ak ≡ δd,k and
Theorem 1.2 is recovered.

(b) The following special case is treated in detail by Miclo [11], albeit in somewhat
different fashion. If there exists π satisfying the detailed balance condition πipij = πjpji
for all i, j ∈ {0, . . . , d − 1}, then by an argument like the one at the beginning of our
Section 3 the eigenvalues of P are nonnegative reals and the spectral polynomials are
nonnegative. Thus, by Theorem 5.2, the absorption time is distributed as a mixture of
convolutions of geometric distributions. Miclo also shows that ad > 0 when the states
in {0, . . . , d− 1} all communicate with one another.

(c) At least one case other than that of part (b) of this remark is known for which
the eigenvalues and spectral polynomials are all nonnegative. If P is upper triangular,
then of course the eigenvalues are nonnegative reals, and He and Zhang [7, Appendix A]
prove that the spectral polynomials are nonnegative.

(d) A result analogous to Theorem 5.2 holds for continuous-time chains; we omit
the details. See Miclo [11, Section 1] for a discussion of connections with the extensive
literature on so-called “phase-type” distributions.

(e) A result similar to Theorem 5.2 (with a similar proof) holds for the distribution
of the fastest strong stationary time of a general ergodic chain X with general initial
distribution m0 and stationary distribution π, provided P(Xt = x)/π(x) is minimized
for every t by the choice x = d. A sufficient condition for this is that the time-reversal



11

of P is stochastically monotone (with respect to the natural linear order on {0, . . . , d})
and m0(x)/π(x) is decreasing in x (for example, m0 = δ0). The theorem then has the
same form as Theorem 5.2, except that now ak needs to be defined as

[Λ(k, d)− λ(k − 1, d)]/π(d).

5.2 Stochastic construction via a modified link

We continue to study the general setting. Whenever the eigenvalues and spectral polyno-
mials are all nonnegative, the link Λ of (5.2) provides an intertwining of the semigroups
(P t)t≥0 and (P̂ t)t≥0 [recall (5.1)], and again (as in Section 3) a chain X̂ with kernel P̂
can be constructed such that X̂0 = 0 and the “sample-path intertwining” relation (3.1)
holds. However, unlike for skip-free chains, in the general case although we do have
Λ(d, d) = 1 (this simply restates our earlier observation that ad+1 = 0) there is no
guarantee that the link Λ is lower triangular and thus all we can say with certainty is
that the absorption times T for X and T̂ (say) for X̂ satisfy T ≤ T̂ . We will rectify this
situation by modifying the link Λ; this will not contradict the uniqueness of Λ proven in
Lemma 5.1, because we will also substitute a different “dual” kernel P for the spectral
kernel P̂ .

To set the stage in the general setting without yet imposing any assumptions about
nonnegativity of eigenvalues or spectral polynomials, define the matrix Λ with rows
λ̄0, . . . , λ̄d by setting

λ̄i :=

{
[1− λi(d)]−1[λi − λi(d)δd] if λi(d) 6= 1
δd if λi(d) = 1,

(i = 0, . . . , d)

where δd is the coordinate row vector (0, 0, . . . , 0, 1), and note that the rows of Λ, like
those of Λ, sum to unity. Further, define P := B + R to be the sum of the bidiagonal
upper triangular matrix B and the matrix R with rank at most 1 vanishing in all
columns except for the last defined by

bij :=


θi if j = i
1−λi+1(d)
1−λi(d)

(1− θi) if j = i+ 1

0 otherwise,

and [recalling the notation (5.3)]

rid :=
[
1− 1− λi+1(d)

1− λi(d)

]
(1− θi) =

ai+1

1− λi(d)
(1− θi)

if λi(d) 6= 1, and by
bij := δij , rid := 0

if λi(d) = 1. Observe that the rows of P sum to unity. Finally, let m0 be the probability
row vector

m0 := (1−m0(d), 0, . . . , 0,m0(d)) = (1− a0, 0, . . . , 0, a0).

The following key fact follows by straightforward calculations from Lemma 5.1.
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Lemma 5.4. In the general setting and the above notation,

m0 = m0Λ and ΛP = P Λ.

One can use Lemma 5.4 in place of Lemma 5.1 to give another proof of Theorem 5.2.
But much more is possible when the eigenvalues and spectral polynomials of P are
all nonnegative, as we shall henceforth assume. In that case we have the following
conclusions (with all proofs entirely routine):

• Λ and P are both stochastic, and so the semigroups (P t)t≥0 and (P t)t≥0 are
intertwined by the link Λ.

• The set A of absorbing states for a chain X with kernel P satisfies A = {d, . . . , d},
where

d := min{i : λi(d) = 1} = min{i : ai = 0} − 1 ∈ {0, . . . , d},

and ai = 0 if and only if i ≥ d+ 1.

• For a P -chain, from each state in {0, . . . , d − 1} the states d and d are each
accessible but none of the other states in A is.

• The construction of Section 2.4 of [2] allows us to build, from X and independent
randomness, a chain X with initial distribution m and kernel P such that

L(Xt |X0, . . . , Xt) = Λ(Xt, ·) for all t.

• The time T to absorption in state d for X is the same (sample-pathwise) as the
time to absorption (call it T ) in A (i.e., in {d, d}).

• Let L be the largest value reached by X prior to absorption, with the convention
L := −1 if the initial state of X is d. Then P(L = k− 1) = ak for all k = 0, . . . , d.
Further, conditionally given L = k − 1, the amounts of time it takes for X to
move up from 0 to 1, from 1 to 2, . . . , from k − 2 to k − 1, and from k − 1 to A
are independent geometric random variables with respective success probabilities
1− θ0, 1− θ1, . . . , 1− θk−2, 1− θk−1.

Thus in the case of nonnegative eigenvalues and spectral polynomials we have en-
riched the conclusion of Theorem 5.2 by means of a stochastic construction identifying
(i) a random variable (namely, L+1) having probability mass function (ak); and, condi-
tionally given L+ 1 = k, (ii) individual geometric random variables whose distributions
appear in the convolution G(θ0, . . . , θk−1).

Remark 5.5. Recall Remark 5.3. If the conditions described there of detailed balance
and complete communication within {0, . . . , d − 1} both hold, then d = d and thus
A = {d} is a singleton.
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