
1. Shows that eigenvalues \(\lambda \) for the following special matrix types satisfy the stated properties

- (i) \(\mathbf{A} \) unitary \(\Rightarrow |\lambda| = 1 \)
- (ii) \(\mathbf{A} \) Hermitian \(\Rightarrow \lambda \) real
- (iii) \(\mathbf{A} \) orthogonal, \(n \) odd \(\Rightarrow \) at least one \(\lambda = \pm 1 \)
- (iv) \(\mathbf{A} \) projection \(\Rightarrow \lambda = 0, 1 \)

2. Consider the vector \(\mathbf{x} = [1, 2, 3, 4]^\top \). Calculate directly from the definitions the norms \(\|\mathbf{x}\|_1, \|\mathbf{x}\|_2, \|\mathbf{x}\|_\pi, \|\mathbf{x}\|_\infty \) for this vector \(\mathbf{x} \). Check your results with the function `norm(x,p)` in Matlab.

3. Show that \(\lim_{p \to \infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_\infty \).

 \textbf{Hint:} Write \(\sum_{i=1}^n |x_i|^p = |x_m|^p \sum_{i=1}^n |x_i/x_m|^p \), where \(m \) is the smallest index \(i \) such that \(|x_m| = \max_i |x_i| \).

4. Consider the following two matrices

- (i) \(\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 8 & 5 \end{pmatrix} \)
- (ii) \(\mathbf{A} = \begin{pmatrix} 13 & -8 \\ 20 & 5 \end{pmatrix} \)

 For each of these choices of the matrix \(\mathbf{A} \), calculate directly from the definitions the quantities \(\rho(\mathbf{A}), \|\mathbf{A}\|_F, \|\mathbf{A}\|_1, \|\mathbf{A}\|_2, \|\mathbf{A}\|_\infty \). Check your results with the functions `eig` and `norm(A,p)` in Matlab.

5. Prove that the Frobenius norm is a proper matrix norm and that it is consistent with the \(\ell_2 \) vector norm \(\| \cdot \|_2 \).

6. Prove that \(\|\mathbf{A}\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}| \).

 \textbf{Hint:} Use an argument similar to that employed for Theorem 7.11 in the text.

7. Consider the following two matrices

- (i) \(\mathbf{A} = \begin{pmatrix} 7/16 & -3/16 \\ -1/16 & 5/16 \end{pmatrix} \)
- (ii) \(\mathbf{A} = \begin{pmatrix} 7/2 & 3/2 \\ -3 & -1 \end{pmatrix} \)

 (a) For each of these choices, calculate directly from the definitions the spectral radius \(\rho(\mathbf{A}) \) and the inverse matrix \(\mathbf{B}^{-1} \) for \(\mathbf{B} = \mathbf{I} - \mathbf{A} \).

 (b) Write a code in Matlab or other language to evaluate the matrix \(\mathbf{B}_N^{-1} \) defined by

 \[\mathbf{B}_N^{-1} \equiv \sum_{k=0}^N \mathbf{A}^k \]

 and find the least \(N \leq 32 \) (if any) for which \(\|\mathbf{B}^{-1} - \mathbf{B}_N^{-1}\|_2 < 10^{-8} \). Explain your numerical observations for both matrices using the results in part (a).