Multivariate Records

March 2009

Daniel Q. Naiman & Fred Torcaso
daniel.naiman@jhu.edu

Department of Applied Mathematics and Statistics
Johns Hopkins University
Overview

(I) Univariate and Multivariate Records
(II) Conditional Sampling of Multivariate Records
(II) Some Intriguing Phenomena
(IV) Record Waiting Times via Abstract Tubes
(V) Conclusions
Key Points

- Study of multivariate records is interesting
- It is challenging to obtain analytical results
- Numerical experiments can be designed
- Sampling from a union - importance sampling
- Computing probability of unions - abstract tubes
- Interesting conjectures resulting from experimentation
Univariate and Multivariate Records

Definition. Given \(x^{(1)}, x^{(2)}, x^{(3)}, \ldots, x^{(n)}, \ldots, \in \mathbb{R} \), we say a record occurs at index \(i \) if \(x^{(i)} \geq x^{(j)} \) for all \(j < i \).

Notation. For \(x, y \in \mathbb{R}^d \) say \(x < y \) if \(x_i < y_i \), for \(i = 1, \ldots, d \).

Definition. Given \(x^{(1)}, x^{(2)}, x^{(3)}, \ldots, x^{(n)}, \ldots, \) in \(\mathbb{R}^d \), we say that a multivariate record occurs at index \(i \) provided \(x^{(i)} \not< x^{(j)} \) for all \(j < i \).

Equivalently. \(x^{(i)} \) is Pareto optimal among \(x^{(j)}, j = 1, \ldots, i \).
Another Multivariate Record Notion

Alternative definition. Given \(x^{(1)}, x^{(2)}, x^{(3)}, \ldots, x^{(n)}, \ldots,\) in \(\mathbb{R}^d\), we might say that a multivariate record occurs at index \(i\) provided \(x^{(j)} < x^{(i)}\) coordinatewise for all \(j < i\).

Observation. If \(X^{(i)}, i = 1, 2, 3, \ldots\) are iid, with \(X^{(i)}\) having iid components, the probability of a record at time \(n\) is

\[
P[X^{(1)}_i, X^{(2)}_i, \ldots, X^{(n-1)}_i < X^{(n)}_i, i = 1, \ldots, d] = (1/n)^d
\]

a summable series for \(d \geq 2\). By the Borel-Cantelli lemma at most finitely many such records with probability 1.
Men & Women’s Long Jump Records
1978-2008

- Men: 8.50
- Women: 7.75

Plot showing a single data point for Men at 8.50 and Women at 7.75.
Men & Women’s Long Jump Records
1978-2008

Men

Women

6.75
7.00
7.25
7.50
7.75

8.00
8.25
8.50
8.75

MCP 2009 – p. 6/38
Men & Women’s Long Jump Records
1978-2008

[Graph showing comparison of men's and women's long jump records from 1978 to 2008]
Men & Women’s Long Jump Records
1978-2008
Men & Women’s Long Jump Records 1978-2008

MCP 2009 – p. 6/38
Men & Women’s Long Jump Records
1978-2008
Men & Women’s Long Jump Records
1978-2008
Men & Women’s Long Jump Records

1978-2008
Men & Women’s Long Jump Records
1978-2008
Men & Women’s Long Jump Records
1978-2008
Men & Women’s Long Jump Records
1978-2008
Men & Women’s Long Jump Records
1978-2008
Men & Women’s Long Jump Records
1978-2008
Men & Women’s Long Jump Records
1978-2008
Men & Women’s Long Jump Records
1978-2008
Univariate Records: A Brief Survey
(See Arnold et al. Records)

Classical model: \(X_1, X_2, \ldots, \text{iid continuous } F \text{ in } (0, +\infty) \),

Associated processes:
- \(T_n = \text{index of } n\text{-th record}, \ n = 0, 1, 2, \ldots \)
- \(R_n = X^*_{T_n} = \text{record value sequence} \)
- \(J_0 = R_0, \ J_n = R_n - R_{n-1}, \ n \geq 1 \) increment process
- \(\Delta_n = T_n - T_{n-1} \) the inter-record time sequence
- \(N_n = \text{number of records among } \{X_1, X_2, \ldots, X_n\} \)

Invariance: Distributions of \(T_n, \Delta_n, N_n \) don’t depend on \(F \)
The Exponential Case

Transformation: $X_i^* := -\log(1 - F(X_i))$ are iid $Exp(1)$ rv's

Consequence of memoryless property:
Increments $R_0^*, R_1^* - R_0^*, R_2^* - R_1^*, \ldots$ are iid $Exp(1)$

- leads to tractable joint distribution for the records
- $R_n^* \sim \Gamma(n + 1, 1), \ i = 0, 1, 2, \ldots$
- leads to expression for distribution of n-th record in the non-exponential case, amenable to asymptotic analysis
Record Times

Define \(I_1 = 1 \) and for \(n > 1 \) let \(I_n = \begin{cases} 1 & \text{if } X_n \text{ is a record} \\ 0 & \text{otherwise} \end{cases} \)

- \(P[I_1 = 1, \ldots, I_n = 1] = P[X_1 < X_2 < \ldots < X_n] = 1/n! \)
- \(P[I_i = 1] = P[X_i = \max\{X_1, \ldots, X_i\}] = 1/i, \)
- \(P[I_1 = 1, \ldots, I_n = 1] = \prod_{i=1}^{n} P[I_i = 1] \)

Consequence: \(I_j \) are independent with \(I_j \sim \text{Bernoulli}(1/j) \)
Some basic facts:

- $N_n = \sum_{j=1}^{n} I_j = \text{number of records among } X_1, \ldots, X_n$
- $E(N_n) = \sum_{j=1}^{n} \frac{1}{j} = \log n + \gamma + o(1)$
- $Var(N_n) = \sum_{j=1}^{n} \frac{1}{j} \left(1 - \frac{1}{j}\right) = \log n + \gamma - \pi^2/6 + o(1)$
- $N_n \sim \log n \text{ w.p. } 1$
- $\frac{N_n - \log n}{\sqrt{\log n}} \xrightarrow{d} N(0, 1)$
- $(\log T_n)/n \xrightarrow{p} 1$

Records become somewhat rare
Remaining Records

Univariate case: A record at time n always beats the best record up to that point in time. Consequently, the new record is always the only remaining record.

Multivariate case: A record at time n may or may not beat some existing records. Consequently, there can be multiple remaining records.

Questions: How many records do we expect to have seen by time n? (R_n)

Questions: How many remaining records do we expect there to be at time n? (Call this r_n.)
Number of Remaining Bivariate Records
Number of Remaining Bivariate Records
Remaining bivariate records correspond to \(Y \) records in the usual sense after \(X \) reverse ordering.
Concomitants

Definition: Given iid bivariate rv’s \((X_i, Y_i), i = 1, \ldots, n\) from a continuous distribution in \(\mathbb{R}^{+2}\), define a permutation \(\pi\) by

\[
X_{\pi_1} < X_{\pi_2} < \cdots < X_{\pi_n}
\]

then \(Y_{[i:n]} = Y_{\pi_i}\) is referred to as the *concomitant* associated with the order statistic \(X_{\pi_i}\).

Observation: Assuming \(X_i\) and \(Y_i\) are independent, the rv’s \(Y_{[n:n]}, Y_{[n-1:n]}, \ldots, Y_{[1:n]}\) form an iid sequence.

Consequence: The number of remaining bivariate records satisfies \(r_n^{(2)} = R_n^{(1)} \sim \log n\).
Generalization to Multivariate Case

The number of remaining multivariate records for a d-variate sequence $X^{(1)}, \ldots, X^{(n)}$ is the same as the number of $d - 1$-variate records for the sequence obtained by

- sorting in reverse order on any one of the coordinates,
- eliminating the coordinate used for sorting, and
- counting the number of remaining records for the resulting sequence.
Generalization to Multivariate Case

$$
\begin{bmatrix}
X_1^{(1)} & X_2^{(1)} & \cdots & X_d^{(1)} \\
X_1^{(2)} & X_2^{(2)} & \cdots & X_d^{(2)} \\
\vdots & \vdots & \cdots & \vdots \\
X_1^{(n-1)} & X_2^{(n-1)} & \cdots & X_d^{(n-1)} \\
X_1^{(n)} & X_2^{(n)} & \cdots & X_d^{(n-1)}
\end{bmatrix}
$$
Generalization to Multivariate Case

$$
\begin{bmatrix}
X_{1}^{(\pi_1)} & X_{2}^{(\pi_1)} & \ldots & X_{d}^{(\pi_1)} \\
X_{1}^{(\pi_2)} & X_{2}^{(\pi_2)} & \ldots & X_{d}^{(\pi_2)} \\
\vdots & \vdots & \ddots & \vdots \\
X_{1}^{(\pi_{n-1})} & X_{2}^{(\pi_{n-1})} & \ldots & X_{d}^{(\pi_{n-1})} \\
X_{1}^{(\pi_n)} & X_{2}^{(\pi_n)} & \ldots & X_{d}^{(\pi_n)}
\end{bmatrix}
$$
Generalization to Multivariate Case

\[
\begin{bmatrix}
X_1^{(\pi_1)} & X_2^{(\pi_1)} & \ldots & X_d^{(\pi_1)} \\
X_1^{(\pi_2)} & X_2^{(\pi_2)} & \ldots & X_d^{(\pi_2)} \\
\vdots & \vdots & \ddots & \vdots \\
X_1^{(\pi_{n-1})} & X_2^{(\pi_{n-1})} & \ldots & X_d^{(\pi_{n-1})} \\
X_1^{(\pi_n)} & X_2^{(\pi_n)} & \ldots & X_d^{(\pi_n)}
\end{bmatrix}
\]
Generating the Next Bivariate Record
(putting aside time needed to obtain it)

Assumption: \((X_i, Y_i)\) a pair of independent \(Exp(1)\) rv’s

\[
f_{XY}(x, y) = e^{-(x+y)}I_{(0, +\infty) \times (0, +\infty)}(x, y)
\]

Goal: Sample from \(f\) conditional on falling in the set of new record-breaking pairs:
Generating the Next Bivariate Record
(putting aside time needed to obtain it)

Assumption: \((X_i, Y_i)\) a pair of independent \(Exp(1)\) rv’s

\[
f_{XY}(x, y) = e^{-(x+y)} I_{(0, +\infty) \times (0, +\infty)}(x, y)
\]

Goal: Sample from \(f\) conditional on falling in the set of new record-breaking pairs:
Generating the Next Bivariate Record
(putting aside time needed to obtain it)

Assumption: \((X_i, Y_i)\) a pair of independent \(Exp(1)\) rv’s

\[
f_{XY}(x, y) = e^{-(x+y)} I_{(0, +\infty) \times (0, +\infty)}(x, y)
\]

Goal: Sample from \(f\) conditional on falling in the set of new record-breaking pairs:
Orthant Decomposition and Conditional Sampling
Orthant Decomposition and Conditional Sampling
Orthant Decomposition and Conditional Sampling

The diagram illustrates the decomposition of the region $A(x_1, y_2)$ into record-breakers and non-record-breakers. The region $A(x_1, y_2)$ is divided into two parts: a green shaded area labeled "record-breakers" and a red shaded area labeled "non-record-breakers."
Orthant Decomposition and Conditional Sampling

\[A(x_2, y_3) \]

- Record-breakers
- Non record-breakers
Orthant Decomposition and Conditional Sampling

- Record-breakers
- Non record-breakers

$A(x_3, y_4)$
Orthant Decomposition and Conditional Sampling

A(x₄, 0)

non record-breakers

record-breakers

x

y
Orthant Decomposition and Conditional Sampling

Orthant: \(A(u, v) = \{(x, y) : x > u, y > v\} \)

Orthant probability: \(P_f[A(u, v)] = (1 - e^{-u})(1 - e^{-v}) \)

Conditional sampling: To get \((X, Y) \mid (X, Y) \in A(u, v)\) we take \((X, Y) = (u, v) + (W, Z)\), where \(W, Z\) are independent \(Exp(1)\) rv's
Conditional Sampling

Acceptance/Rejection

Goal: Sample from given probability density f

Idea: Find probability density g with:

(a) g easy to sample from

(b) $f \leq cg$ for c small
Conditional Sampling

Acceptance/Rejection

Goal: Sample from given probability density f

Idea: Find probability density g with:

(a) g easy to sample from

(b) $f \leq cg$ for c small ($c = \text{expected # of iterations}$)
Conditional Sampling
Acceptance/Rejection

Goal: Sample from given probability density \(f \)

Idea: Find probability density \(g \) with:

(a) \(g \) easy to sample from

(b) \(f \leq cg \) for \(c \) small \((c = \text{expected } \# \text{ of iterations})\)

Algorithm:

Set Accept=False
Repeat
 Sample \(X \sim g \)
 Set Accept=True with prob \(f(X)/cg(X) \)
Until Accept=True
Return \(X \)
Illustration:
Sampling the Standard Normal Distribution

\[f(x) \quad \text{and} \quad cg(x) \]
Illustration:
Sampling the Standard Normal Distribution
Illustration:
Sampling the Standard Normal Distribution
Illustration: Sampling the Standard Normal Distribution

The diagram illustrates a standard normal distribution with the probability density function (PDF) labeled as $f(x)$ and a modified distribution labeled as $cg(x)$. The distribution is centered at $x=0$, with values ranging from -3 to 3 on the x-axis.
Application to Union Sampling

Want to sample X according to pdf f, conditioned on $X \in \bigcup_{i=1}^{n} A_i$

$$\tilde{f} := \frac{f \mathbb{1}_{\bigcup_{i=1}^{n} A_i}}{P_f(\bigcup_{i=1}^{n} A_i)}$$

where

$$P_f(B) := \int_B f(x) dx.$$
Application to Union Sampling

Want to sample X according to pdf f, conditioned on $X \in \bigcup_{i=1}^{n} A_i$

$$\tilde{f} := \frac{f I_{\bigcup_{i=1}^{n} A_i}}{P_f(\bigcup_{i=1}^{n} A_i)}$$

where

$$P_f(B) := \int_{B} f(x) dx.$$
Union Sampling

\[\tilde{f} = \frac{f(x)I_{\bigcup_{i=1}^{n} A_i(x)}}{P_f(\bigcup_{i=1}^{n} A_i)} = \frac{\sum_j P_f(A_j)}{P_f(\bigcup_{i=1}^{n} A_i)} \frac{1}{\sum_j I_{A_j}(x)} \sum_i \frac{P_f(A_i)}{\sum_j P_f(A_j)} \frac{f I_{A_i}}{P_f(A_i)}\]

\[= \frac{K}{N(x)} \sum_{i=1}^{n} q_i \tilde{f}_i(x)\]
Union Sampling

\[\tilde{f} = \frac{f(x)I_{\bigcup_{i=1}^{n} A_i(x)}}{P_f(\bigcup_{i=1}^{n} A_i)} = \frac{\sum_{j} P_f(A_j)}{P_f(\bigcup_{i=1}^{n} A_i)} \sum_{i} \frac{1}{I_{A_j}(x)} \sum_{i} P_f(A_i) \frac{fI_{A_i}}{P_f(A_i)} \]

\[= \frac{K}{N(x)} \sum_{i=1}^{n} q_i \tilde{f}_i(x) \]

\[K := \frac{\sum_{j=1}^{n} P_f(A_j)}{P_f(\bigcup_{j=1}^{n} A_j)} \]

\[q_i = \frac{P_f(A_i)}{\sum_{j=1}^{n} P_f(A_j)} \]

\[N(x) = \sum_{j=1}^{n} I_{A_j}(x), \]

\[\tilde{f}_i = \frac{I_{A_i}(x)f(x)}{P_f(A_i)} \]
Union Sampling

\[
\begin{align*}
\tilde{f} &= \frac{f(x)I_{\bigcup_{i=1}^{n} A_i}(x)}{P_f(\bigcup_{i=1}^{n} A_i)} = \frac{\sum_j P_f(A_j)}{P_f(\bigcup_{i=1}^{n} A_i)} \frac{1}{\sum_j I_{A_j}(x)} \sum_i \frac{P_f(A_i)}{\sum_j P_f(A_j)} \frac{fI_{A_i}}{P_f(A_i)} \\
&= \frac{K}{N(x)} \sum_{i=1}^{n} q_i \tilde{f}_i(x)
\end{align*}
\]

\[
K := \frac{\sum_{j=1}^{n} P_f(A_j)}{P_f(\bigcup_{j=1}^{n} A_j)} \quad N(x) = \sum_{j=1}^{n} I_{A_j}(x),
\]

\[
q_i = \frac{P_f(A_i)}{\sum_{j=1}^{n} P_f(A_j)} \quad \tilde{f}_i = \frac{I_{A_i}(x)f(x)}{P_f(A_i)}
\]
Union Sampling

\[\tilde{f} = \frac{f(x) I_{\bigcup_{i=1}^{n} A_i}(x)}{P_f(\bigcup_{i=1}^{n} A_i)} = \frac{\sum_j P_f(A_j)}{P_f(\bigcup_{i=1}^{n} A_i)} \sum_j \frac{1}{I_{A_j}(x)} \sum_i \frac{P_f(A_i)}{\sum_j P_f(A_j)} \frac{f I_{A_i}}{P_f(A_i)} \]

\[= \frac{K}{N(x)} \sum_{i=1}^{n} q_i \tilde{f}_i(x) \]

\[K := \frac{\sum_{j=1}^{n} P_f(A_j)}{P_f(\bigcup_{j=1}^{n} A_j)} \]

\[q_i = \frac{P_f(A_i)}{\sum_{j=1}^{n} P_f(A_j)} \]

\[N(x) = \sum_{j=1}^{n} I_{A_j}(x), \]

\[\tilde{f}_i = \frac{I_{A_i}(x)f(x)}{P_f(A_i)} \]
Union Sampling

\[
\tilde{f} = \frac{f(x)I_{\bigcup_{i=1}^{n} A_i}(x)}{P_f(\bigcup_{i=1}^{n} A_i)} = \frac{\sum_j P_f(A_j)}{P_f(\bigcup_{i=1}^{n} A_i)} \sum_j \frac{1}{I_{A_j}(x)} \sum_i \frac{P_f(A_i)}{\sum_j P_f(A_j)} \frac{f I_{A_i}}{P_f(A_i)}
\]

\[= \frac{K}{N(x)} \sum_{i=1}^{n} q_i \tilde{f}_i(x)\]

\[K := \frac{\sum_{j=1}^{n} P_f(A_j)}{P_f(\bigcup_{j=1}^{n} A_j)}\]

\[q_i = \frac{P_f(A_i)}{\sum_{j=1}^{n} P_f(A_j)}\]

\[N(x) = \sum_{j=1}^{n} I_{A_j}(x),\]

\[\tilde{f}_i = \frac{I_{A_i}(x)f(x)}{P_f(A_i)}\]
Union Sampling

\[
\tilde{f} = \frac{f(x)I_{\bigcup_{i=1}^{n} A_i(x)}}{P_f(\bigcup_{i=1}^{n} A_i)} = \frac{\sum_j P_f(A_j)}{P_f(\bigcup_{i=1}^{n} A_i)} \frac{1}{\sum_j I_{A_j}(x)} \sum_i \frac{P_f(A_i)}{\sum_j P_f(A_j)} \frac{fI_{A_i}}{P_f(A_i)}
\]

\[
= \frac{K}{N(x)} \sum_{i=1}^{n} q_i \tilde{f}_i(x)
\]

\[
K := \frac{\sum_{j=1}^{n} P_f(A_j)}{P_f(\bigcup_{j=1}^{n} A_j)} \quad N(x) = \sum_{j=1}^{n} I_{A_j}(x),
\]

\[
q_i = \frac{P_f(A_i)}{\sum_{j=1}^{n} P_f(A_j)} \quad \tilde{f}_i = \frac{I_{A_i}(x)f(x)}{P_f(A_i)}
\]
Algorithm

Write:

\[\tilde{f} = \frac{K}{N(x)} \sum_{i=1}^{n} q_i \tilde{f}_i(x) \leq K \sum_{i=1}^{n} q_i \tilde{f}_i(x) \]

Algorithm: Repeatedly sample from the mixture distribution

\[X \sim g = \sum_{i=1}^{n} q_i \tilde{f}_i(x), \]

and stop and keep \(X \) with probability

\[\tilde{f}(X)/Kg(X) = 1/N(X) \]
Sampling from g

$$g = \sum_{i=1}^{n} q_i \tilde{f}_i(x)$$

This is a mixture of conditional densities. To sample from g

- pick an index I s.t. $P[I = i] = q_i$
- sample X from \tilde{f}_I
Some Interesting (Unexplained) Phenomena

Simulation experiment: Generate N conditional new bivariate exponential records

Remark: N equals R_n for some unobserved (and no doubt huge) value of n
Remaining Bivariate Records After Sampling 10,000 Conditional Bivariate Exponential Records
Behavior of Remaining Records:
Bivariate Exponential Case

Simulation experiment results:

<table>
<thead>
<tr>
<th>R_n</th>
<th>r_n</th>
<th>$x + y$</th>
<th>$\sqrt{2R_n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000</td>
<td>109</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>10,000</td>
<td>133</td>
<td>142</td>
<td>141.4</td>
</tr>
<tr>
<td>50,000</td>
<td>338</td>
<td>316</td>
<td>316.2</td>
</tr>
<tr>
<td>100,000</td>
<td>428</td>
<td>447</td>
<td>447.2</td>
</tr>
<tr>
<td>200,000</td>
<td>592</td>
<td>632</td>
<td>632.5</td>
</tr>
</tbody>
</table>

Apparent relationship: For $d = 2$

\[r_n \sim \sqrt{2R_n} \quad R_n \sim \frac{1}{2}r_n^2 \]
Behavior of Remaining Records:
Trivariate Exponential Case

Simulation experiment results:

<table>
<thead>
<tr>
<th>R_n</th>
<th>r_n</th>
<th>$\frac{1}{2}(6R_n)^{\frac{2}{3}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>19</td>
<td>17.1</td>
</tr>
<tr>
<td>40</td>
<td>34</td>
<td>28.7</td>
</tr>
<tr>
<td>60</td>
<td>34</td>
<td>39.0</td>
</tr>
<tr>
<td>80</td>
<td>56</td>
<td>48.3</td>
</tr>
</tbody>
</table>

Apparent relationship: For $d = 3$

$$r_n \sim \frac{1}{2}(3!R_n)^{\frac{2}{3}}$$
Conjecture in General Case

Conjecture: \(R_n \sim \frac{1}{d!} (\log n)^d \)

<table>
<thead>
<tr>
<th>(d)</th>
<th>(R_n)</th>
<th>(r_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\log n)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{2} (\log n)^2)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{1}{3!} (\log n)^3)</td>
<td>(\frac{1}{2} (\log n)^2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Distribution of Beaten Records

Experiment: Generate 10,000 conditional bivariate records & tally for each record, B the number of remaining records it beat.

Empirical distribution of B:

<table>
<thead>
<tr>
<th>m</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>≥ 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_m</td>
<td>.492</td>
<td>.260</td>
<td>.126</td>
<td>.065</td>
<td>.032</td>
<td>.012</td>
<td>.0077</td>
<td>.003</td>
<td>.0017</td>
<td>.0016</td>
</tr>
</tbody>
</table>

Remarkably similar to a Geometric $(1/2)$ distribution
Sampling only *records* leads to useful information about relationship between R_n and r_n.

Want to understand the relationship of these random variables to n.

Still want to avoid explicit and time-consuming sampling of non-records.

Sufficient to determine behavior of waiting time to next record.
Sampling Waiting Time to Next Record

Waiting time distribution: Given current remaining records, $T \sim Geometric(p)$ where $p = P[(X, Y) \in \mathcal{N}^c]$.
Unions of Translated Orthants

Decompose: $\mathcal{N}^c = \bigcup_{i=1}^{n} A_i$

Inclusion-Exclusion Identity: $I_{\mathcal{N}^c} = \sum_{i=1}^{n} I_{A_i} - \sum_{i=1}^{n-1} I_{A_i \cap A_{i+1}}$

\[
P_f[\mathcal{N}^c] = \sum_{i=1}^{n} P_f[A_i] - \sum_{i=1}^{n-1} P_f[A_i \cap A_{i+1}]
\]
Unions of Translated Orthants

Decompose: \(\mathcal{N}^c = \bigcup_{i=1}^{n} A_i \)

Inclusion-Exclusion Identity: \(I_{\mathcal{N}^c} = \sum_{i=1}^{n} I_{A_i} - \sum_{i=1}^{n-1} I_{A_i \cap A_{i+1}} \)

\[
P_f[\mathcal{N}^c] = \sum_{i=1}^{n} P_f[A_i] - \sum_{i=1}^{n-1} P_f[A_i \cap A_{i+1}]\]
Unions of Translated Orthants

Decompose: $\mathcal{N}^c = \bigcup_{i=1}^{n} A_i$

Inclusion-Exclusion Identity: $I_{\mathcal{N}^c} = \sum_{i=1}^{n} I_{A_i} - \sum_{i=1}^{n-1} I_{A_i \cap A_{i+1}}$

$$P_f[\mathcal{N}^c] = \sum_{i=1}^{n} P_f[A_i] - \sum_{i=1}^{n-1} P_f[A_i \cap A_{i+1}]$$
Unions of Translated Orthants

Decompose: $N^c = \bigcup_{i=1}^{n} A_i$

Inclusion-Exclusion Identity: $I_{N^c} = \sum_{i=1}^{n} I_{A_i} - \sum_{i=1}^{n-1} I_{A_i \cap A_{i+1}}$

$$P_f[N^c] = \sum_{i=1}^{n} P_f[A_i] - \sum_{i=1}^{n-1} P_f[A_i \cap A_{i+1}]$$
Unions of Translated Orthants

Decompose: \(\mathcal{N}^c = \bigcup_{i=1}^{n} A_i \)

Inclusion-Exclusion Identity: \(I_{\mathcal{N}^c} = \sum_{i=1}^{n} I_{A_i} - \sum_{i=1}^{n-1} I_{A_i \cap A_{i+1}} \)

\[
P_f[\mathcal{N}^c] = \sum_{i=1}^{n} P_f[A_i] - \sum_{i=1}^{n-1} P_f[A_i \cap A_{i+1}]\]
Unions of Translated Orthants

Decompose: \(N^c = \bigcup_{i=1}^{n} A_i \)

Inclusion-Exclusion Identity: \(I_{N^c} = \sum_{i=1}^{n} I_{A_i} - \sum_{i=1}^{n-1} I_{A_i \cap A_{i+1}} \)

\[
P_f[N^c] = \sum_{i=1}^{n} P_f[A_i] - \sum_{i=1}^{n-1} P_f[A_i \cap A_{i+1}]\]
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

Indicator of A_1
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

Indicator of A_2

\[N \]
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

Indicator of A_3
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

Indicator of A_4
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

Indicator of A_5
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

\[T_1 = \text{sum of indicators of the } A_i \]
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

Indicator of $A_1 \cap A_2$
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

Indicator of $A_2 \cap A_3$
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

\[T_2 = \text{sum of indicators of the } A_i \cap A_{i+1} \]
Unions of Translated Orthants

Illustration of the inclusion-exclusion identity

$T_1 - T_2$
Higher-Dimensional Case

3-d animation
Union of Translates of Orthants
Inclusion-Exclusion Identity for Orthants

Define \mathcal{F} to be the collection of index sets J for which $O_{u^{(i)}}, i \in J$ meet on ∂X. For generic choices of $u^{(i)}, i = 1, \ldots, n$ these sets have at most d elements.

Theorem (N. & Wynn 2001). The collection of sets $\{O_{u^{(i)}}, i = 1, \ldots, n\}$ together with the simplicial complex \mathcal{F} forms an abstract tube.
Consequences of the Abstract Tube Property

Can write

\[I_{\bigcup_{i=1}^{n} O_u(i)} = \sum_{F \in \mathcal{F}} (-1)^{|F|+1} I_{\bigcap_{i \in F} O_u(i)} \]

- Number of terms grows like a polynomial in \(n \) instead of exponentially.
- Computational effort to calculate \(\mathcal{F} \) is order \(n^{d-1} \).
- Truncation inequality property.
Conclusions

- Multivariate record process is interesting to study, and little is known
- Computational tools for their study are available
- Interesting phenomena worthy of further investigation are being uncovered