Practice Final
MAT-16C Short Calculus - III
Spring 2011

Name

- This test is closed notes, closed book.
- Laptops and calculators are NOT allowed.
- There are 4 pages and 11 questions total.
- You can leave an answer as a numerical expression without computing the final value. For example, this is a perfectly acceptable answer:
 \[\frac{((250 - 63)/(1 - e^{-6.5})) * \ln(27/168)}{27/168} \]. Show your work clearly!!
- The maximum score in the test is 150 points.

Signature
<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
<th>Max Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>
1. Let \(f(x, y) = \cos(1 + xy^2) \).

 (a) (4 pts) Compute \(f_y \).
 (b) (6 pts) Compute \(f_{yx} \).

2. Consider the function \(f(x, y) = 5 + x^2 - x^2y - y^2 - \frac{1}{3}y^3 \).

 (a) (8 pts) Find all critical points of \(f(x, y) \).
 (b) (7 pts) Decide whether each critical point found in (a) is a relative minimum, relative maximum, saddle point or indeterminable.

3. Write the \(n \)-th term in the following sequences:

 (a) (2 pts) \(-\frac{1}{2}, \frac{4}{3}, -\frac{9}{4}, \frac{16}{5}, \ldots \)
 (b) (2 pts) \(2, 2, \frac{8}{6}, \frac{16}{24}, \frac{32}{120}, \ldots \)
 (c) (2 pts) \(1, \frac{5}{8}, \frac{7}{15}, \frac{9}{24}, \frac{11}{35}, \frac{13}{48}, \ldots \)

4. Determine if the following sequences converge or diverge. If the sequence converges, write the limit.

 (a) (3 pts) \(a_n = \frac{2^{n+1}}{3\cdot 2^n} \)
 (b) (3 pts) \(a_n = (-1)^n \left(\frac{1}{n^2+3} \right) \)
 (c) (3 pts) \(a_n = (-1)^n \left(\frac{n+1}{n} \right) \)

5. Determine if the following series converge or diverge. Clearly explain why.

 (a) (6 pts) \(\sum_{n=0}^{\infty} \frac{n}{500n+79} \)
 (b) (6 pts) \(\sum_{n=1}^{\infty} (2n)! \left(\frac{2}{3} \right)^n \)
 (c) (6 pts) \(\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{n}}} \)

6. (12 pts) Find the radius and interval of convergence for the power series
 \[\sum_{n=1}^{\infty} \frac{3^{-n}}{n+1} (x + 1)^n. \]

7. (10 pts) Find the sum \(\sum_{n=0}^{\infty} \frac{1}{3^n 2^{n-2}} \).

8. Evaluate the following double integrals. (Remember that sometimes it helps to change the order of integration).

 (a) (12 pts) \(\int_0^2 \int_0^{\sqrt{x}} y(x - y^2)^3 \, dy \, dx \).
 (b) (12 pts) \(\int_0^4 \int_{\sqrt{x}}^2 xsin(1 + y^5) \, dy \, dx \).
9. Solve the following differential equations.

(a) (10 pts) \(e^{x^2}x' + y = 2xy. \)

(b) (10 pts) \(xy' - 2y = x^2\ln(x) \) with the initial conditions that \(y = 0 \) when \(x = 1. \)

10. (15 pts) Approximate the definite integral \(\int_0^1 xe^{-x^3} dx \) using a 7th-degree Taylor polynomial for the function \(xe^{-x^3}. \)

11. (11 pts) Minimize the function \(f(x, y, z) = x^2 + 2y^2 + 3z^2 \) subject to the constraint \(3x - 2y + z = \frac{34}{6}. \) Find \(x, y, z \) at the minimum and the minimum value of the function.