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The National Airspace System (NAS) is designed to accommodate a large number of flights over
North America. For purposes of workload limitations for air traffic controllers, the airspace is
partitioned into approximately 600 sectors; each sector is observed by one or more controllers.

In order to satisfy workload limitations for controllers, it is important that sectors be designed
carefully according to the traffic patterns of flights, so that no sector becomes overloaded. We
formulate and study the airspace sectorization problem from an algorithmic point of view, model-

ing the problem of optimal sectorization as a geometric partition problem with constraints. The
novelty of the problem is that it partitions data consisting of trajectories of moving points, rather
than static point set partitioning that is commonly studied. First, we formulate and solve the
1D version of the problem, showing how to partition a line into “sectors” (intervals) according to

historical trajectory data. Then, we apply the 1D solution framework to design a 2D sectoriza-
tion heuristic based on binary space partitions. We also devise partitions based on balanced “pie
partitions” of a convex polygon.

We evaluate our 2D algorithms experimentally, applying our algorithms to actual historical
flight track data for the NAS. We compare the workload balance of our methods to that of
the existing set of sectors for the NAS and find that our resectorization yields competitive and
improved workload balancing. In particular, our methods yield an improvement by a factor

between 2 and 3 over the current sectorization in terms of the time-average and the worst-case
workloads of the maximum workload sector. An even better improvement is seen in the standard
deviations (over all sectors) of both time-average and worst-case workloads.
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1. INTRODUCTION

The National Airspace System (NAS) is a complex transportation system designed
to facilitate the management of air traffic with safety as the primary objective and
efficiency as the secondary objective. Airspace design engineers and air transporta-
tion policy makers are continually “tweaking” the system to adjust for changes in
the demand patterns, changes in weather systems that disrupt the network, and
changes in the air traffic management (ATM) policies that govern the safe operation
of aircraft.

A key component of the NAS is the partitioning of airspace into managerial
units. At the highest level, the NAS is partitioned into 20 Air Route Traffic Control
Centers (ARTCC), each of which is partitioned into sectors, each one of which is
managed by one air traffic controller (or a small team of 1-3 controllers) at any
given time of the day. There are a total of about 600 sectors; the FAA employs
about 15,000 controllers, of which over 7000 are due to retire within the next 9
years [Occupational Outlook Handbook ], suggesting a need to redesign the airspace
for fewer controllers in the near future. There are roughly 60,000 daily flights within
the NAS, interconnecting about 2000 airports. See Figure 1.

The capacity of the NAS to accommodate increases in traffic demand are being
pushed to the limits. Both the FAA and NASA are backing initiatives to study
how greater throughput can be accommodated safely through system redesign and
new technologies for automation, communication, and ATM. The National Airspace
Redesign (NAR) initiative [National Airspace Redesign (NAR) ] has been in place
for the last few years to address this challenging problem. Airspace redesign is
critical for anticipated future growth in the NAS. Current sector boundaries are
largely determined by historical effects and have evolved over time; they are not
the result of analysis of route structures and demand profiles, which have changed
over the years, while the sector geometry has stayed relatively constant.

In this paper we study the automatic sectorization (“sector boundary design”)
of airspace problem from a formal and geometric perspective, while attempting to
model precisely the system design constraints. In doing so, we have developed a
tool, GeoSect, which allows us to explore algorithms and heuristics for automatic
sectorization and load balancing.

More formally, the sectorization problem is to determine a decomposition of a
given airspace domain D into a set of k sectors, σ1, . . . , σk, in an “optimal” manner.
Optimality is defined in terms of the workloads, w(σi), of the sectors, where w(σi) is
a numerical value indicating the amount of “effort” required to manage and control
traffic in sector σi. The objective may be to minimize the maximum workload
(min-max) or to minimize the average workload (min-avg) across sectors, subject
to an upper bound, k, on the number of sectors. Alternatively, the objective may
be to minimize k subject to a bound on the maximum or average workload across
sectors.

The quantification of “workload” is very important to the problem. Workload
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is challenging to model accurately, since it should take into account human factors
issues, which include subjective estimations of psychological/physiological state and
mental effort. Mental workload involves issues of visual and auditory perception,
memory, stress, and attention span. Many prior studies (see, e.g., [Hendy et al.
1997; Mogford et al. 1995; Stein 1998; Schmidt 1976]) have addressed the modeling
and quantification of ATC workload.

We model the problem using a geometric and easily quantified approach to defin-
ing sector workload: Based on a given set of historical flight data, w(σ) is defined
to be the maximum (worst-case) or the time average number of aircraft in sector
σ during a fixed time window [0, T ] (typically, the time window corresponds to a
24-hour day). This definition accounts directly for the traffic density/number of
flights aspect of workload. While it does not include other components that often
make up an aggregated workload estimate, we are able to quantify some these other
factors and add them to our model (see our discussion in Section 6).

The historical track data is assumed to be given. It gives a set of trajectories (each
given by a sequence of way points with time stamps) for each recorded flight path
in the NAS over the time window [0, T ]. We are using the historical data to give
a distribution (in space and time) of the typical trajectories of the aircraft in the
NAS; on any given day, of course, the flight paths vary, with weather conditions and
other events that disrupt the standard schedule. Thus, a potentially more desirable
method of assessing workload is to use track data from an airspace simulation (such
as NASA’s Airspace Concept Evaluation System [Sweet et al. 2002]), since this
allows one to evaluate the “ideal” routes for a given set of demand, to incorporate
new air traffic concepts (such as “Free Flight”), and to modify the demand according
to predicted future growth. The methods we investigate, though, work equally well
with input from a simulator or from historical data.

1.1 Related Work

The sectorization problem has been studied most recently as a global optimization
problem using techniques of integer programming; after discretizing the NAS into
2566 hexagonal cells, Yousefi and Donohue [Yousefi and Donohue 2004; Yousefi
2005] formulate and solve (using CPLEX) a mixed integer programming model
that captures more of the sector workload issues than many prior methods. They
use a large-scale simulation to compute en route metrics that are combined to give
a workload model. Delahaye et al. [Delahaye et al. 1998] use genetic algorithms for
sectorization. Tran et al. [Tran et al. 2003] apply graph partitioning methods to
sectorization.

In the algorithms literature, there has been related work on partitioning of rect-
angles and arrays for load balancing of processors; see, e.g., [Berman et al. 2000;
2002; Berman et al. 2001; Khanna et al. 1998; Khanna et al. 1997; Muthukrishnan
et al. 1999; Muthukrishnan and Suel 2005].

Geographical load balancing applications have arisen in political districting (to
avoid gerrymandering); see Altman [Altman 1997] (who proves NP-hardness of
political districting), Altman and McDonald [Altman and McDonald 2004], and
Forman and Yue [Forman and Yue 2003]. Geographic load balancing also arises in
electric power districting; see, e.g., Bergey, Ragsdale, and Hoskote [Bergey et al.
2003]. Recent work in the computational geometry literature looks at minimum-
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Fig. 1. Top: The current sectorization of the airspace over the USA. Bottom: Historical track

data for flights.
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cost load balancing in sensor networks; see Carmi and Katz [Carmi and Katz 2005].
What makes our sectorization problem novel compared with most geometric load

balancing problems previously studied is that the input data consists of trajectories
of moving points; typical geometric partitioning problems have addressed static
point data. This implies that a 2D version of our problem is really best thought of
in 3D (x, y, t), and it means that even the 1D version of our problem has interesting
structure, as it maps to a 2D partitioning problem in space-time.

1.2 Summary of Contributions

(1). We model the airspace sectorization problem in algorithmic terms, as a
precise computational geometric formulation.

(2). We provide an exact solution to some versions of the one-dimensional (1D)
sectorization problem.

(3). We develop a suite of heuristics to solve the problem in two dimensions (2D),
using the 1D solution as a subproblem, and we discuss algorithmic issues.

(4). We implement and conduct experiments to test the effectiveness of our meth-
ods on real flight data. We present extensive computational results comparing our
methods and design choices in our heuristics. We also compare the results we obtain
with the existing sectorization currently in use by the FAA.

Our results are quite promising: our best heuristic methods yield an improvement
by a factor between 2 and 3 over the current sectorization in terms of the time-
average and the worst-case workloads of the maximum workload sector. An even
better improvement is seen in the standard deviations (over all sectors) of both
time-average and worst-case workloads.

We have made various simplifications in developing the model and implement-
ing our solutions. We are able to extend our solutions in several directions; see
Section 6. Currently, our software works in only 2D; however, the methods extend
to account for different altitudes and climb and descend trajectories. We also deal
with only one altitude level of sectorization, the so-called “high altitude” sectors;
there are also low altitude sectors for general aviation aircraft and ultra-high alti-
tude sectors for military and certain transcontinental flights. In the terminal area
near an airport, there are also more complex three-dimensional sectors correspond-
ing to arrival and departure flights, which necessarily change altitude. We model
workload in terms of aircraft density (number of aircraft in a sector), determined
by a given set of track data, which may come from historical data (as ours did) or
from the results of a simulation or from wind-optimized computed trajectories. In
the conclusion (Section 6), we discuss extensions of our methods to include more
realistic models of workload (e.g., that include coordination workload). We ac-
knowledge that the results reported in this paper are based on a highly simplified
workload estimation model; our results are, however, applicable to a broader model,
and understanding how our methods behave in the simplified model may help in
understanding the bigger picture, including the operational constraints that impact
the sectorization problem.
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2. THE 1D SECTORIZATION PROBLEM

We begin with a study of the 1D problem, which has interesting algorithmic aspects
of its own; further, the 1D solution is used within the 2D heuristics we develop and
implement.

Consider an airspace domain that is 1-dimensional, consisting of an interval,
without loss of generality D = [0, 1], on the x-axis. Flights can take off at some
point (“airport”) of D and land at another point (“airport”).

The input data consists of a set S of flight trajectories, each represented by
a sequence of “waypoints”, (xi, ti), where ti is the timestamp when the flight is
recorded to be at location xi ∈ [0, 1]. We consider there to be a finite time horizon,
[0, T ], containing all of the timestamps ti. We generally assume that the flight speed
between waypoints is constant; thus, a trajectory can be thought of as a t-monotone
polygonal chain in the (x, t)-plane. If we view this problem in a “LineLand” model,
then it makes sense that the trajectories be x-monotone as well; if the speeds are
constant along each such trajectory, then the trajectories are simply line segments.
(Other waypoints between the start and destination x-coordinates may be used to
specify changes in speed or direction. If the 1D problem arises as a projection of
the 2D problem onto the (x, t)-plane, the trajectories will, in general, zig-zag, not
necessarily being monotone in x.) While our methods for the 1D problem can be
extended to more general polygonal trajectories, here, we consider the case of the
1D problem in which the input S = {s1, . . . , sn} is a set of line segments in the
(x, t)-plane, all of which lie within the 1-by-T rectangle, [0, 1] × [0, T ].

The sectorization problem asks us to partition [0, 1] into a set of k sectors,
σ1, σ2, . . . , σk; i.e., we desire partition points, x0 = 0 < x1 < x2 < · · · < xk−1 <
xk = 1, which define the sector intervals σi = (xi−1, xi).

The max-workload, w(σi), of a sector σi = (xi−1, xi) is defined to be the max-
imum number of flights ever simultaneously in sector σi: this is given geometri-
cally by the maximum number of segments of S intersected by a horizontal seg-
ment, (xi−1, t)(xi, t), for t ∈ [0, T ]. One can envision a sweep of the rectangle
[xi−1, xi] × [0, T ] by a horizontal segment – the max-workload of σi is the maxi-
mum number of segments of S intersected during the sweep. The avg-workload,
w̄(σi), of a sector σi = (xi−1, xi) is defined to be the time-average number of flights
in the sector σi: this is given geometrically by the sum of the lengths of the t-
projections of segments S clipped to the rectangle [xi−1, xi] × [0, T ], divided by T .
If we let ξi(t) denote the number of segments of S crossed by the horizontal segment

(xi−1, t)(xi, t), then w(σi) = maxt∈[0,T ] ξi(t) and w̄(σi) = 1
T

∫ T

0
ξi(t)dt.

The min-k sectorization problem is to determine a set of partition points xi

(and corresponding sectors σi) in order to minimize the number, k, of sectors in
a partitioning of [0, 1], subject to a specified workload bound, B. The workload
bound B stipulates that w(σi) ≤ B, or that w̄(σi) ≤ B, for all i = 1, . . . , k, in the
max-workload or the avg-workload case, respectively.

The min-B sectorization problem is to determine a set of partition points xi

(and corresponding sectors σi) in order to minimize the upper bound, B, on the
workloads of the sectors, subject to their being at most (and therefore exactly)
k sectors, where k is specified as part of the input. In other words, we want to
determine the xi’s, i = 1, . . . , k, subject to w(σi) ≤ B, or w̄(σi) ≤ B, for all
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i = 1, . . . , k, in the max-workload or the avg-workload case, respectively.

Thus, we get four versions of our sectorization problem, depending if we are using
max-workload or avg-workload measures, and depending on the choice of min-k or
min-B in the optimization.

min-k, max-workload. We are given a budget B on the max-workload in each
sector and wish to minimize the number, k, of sectors. We prove that the following
greedy algorithm is optimal: At stage i, with partition points x1, . . . , xi already de-
termined, we compute partition point xi+1 in order to make sector σi+1 = (xi, xi+1)
as large as possible, subject to the budget constraint B.

The determination of xi+1 according to this greedy rule is an interesting geomet-
ric subproblem in its own right, and it is related to the following problem: Given a
set of n line segments in the plane, determine the lowest point of the B-level. Recall
that the j-level of a set of line segments S is defined to be the locus of all points on
S that have exactly j segments lying strictly below. In our setting, “below” means
“leftward” in the (x, t)-plane, and “lowest” point on the B-level means the leftmost
point of the B-level. The lowest point on the B-level in an arrangement of lines
is solved in expected time O(n log n) by the randomized algorithm of Chan [Chan
1999]. In fact, this algorithm is readily adapted to give the same expected running
time O(n log n) for computing the lowest point on the B-level in an arrangement
of line segments or x-monotone curves of constant complexity [Chan 2006]. Be-
low, we give a simple O(n log2 n) deterministic algorithm; we are not aware of an
O(n log n) deterministic algorithm for computing the lowest point on the B-level of
an arrangement of lines or of segments.

Consider sweeping a vertical line ℓ rightwards from x = xi. The max-workload
of the sector between x = xi and ℓ can change only at certain events, when ℓ passes
over a critical point, and it can only go up (by definition). See Figure 2. Each
left endpoint of a segment of S is a potential critical point. A critical point may
also occur at the intersection of two segments of S, if the signs of these segments’
slopes are opposite (since, in this case, the t-projections of the segments within the
vertical strip start to overlap, possibly causing the max-workload to change). A
critical point may occur at the intersection ρj ∩ sl, for some segment sl ∈ S, if the
signs of the slopes of sj and sl are opposite; here, ρj is the rightwards ray from
the right endpoint of segment sj ∈ S. Finally, a critical point can occur at the
intersection ρij ∩ sl, for some segment sl ∈ S, if the signs of the slopes of sj and sl

are the same. Here, ρij is the rightwards ray from the point ai,j = {x = xi} ∩ sj

on sj intersected by the vertical line x = xi.

We can now solve the geometric subproblem using binary search on the set of x-
coordinates of potential critical points. Using slope selection (see Cole et al. [Cole
et al. 1989]), we can, in O(n log n) time, compute the median x-coordinate, x′,
among vertices in the arrangement, A, of the n lines containing each segment of
S, the (at most n) lines containing each ray ρj , the (at most n) lines containing
each ray ρij , and the (at most n) vertical lines through left endpoints of segments
in S. In fact, we compute x′ to be the median x-coordinate among vertices of the
arrangement that lie between x = xi and x = 1. Now, we can “test” the value x′, to
see if xi+1 should lie to its left or its right, by computing the workload, w([xi, x

′]): If
w([xi, x

′]) > B, then we know that xi+1 < x′; otherwise, xi+1 ≥ x′. Computing the
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workload w([xi, x
′]) is easily done in time O(n log n), e.g., by clipping the segments

S to the strip [xi, x
′], projecting the clipped segments onto the t-axis, and sweeping

in t to determine the depth of overlap among the projections. Since there are
at most O(n2) candidate critical points, and each step of the binary search takes
time O(n log n), we get that the overall algorithm to determine xi+1 greedily takes
(deterministic) time O(n log n log n2) = O(n log2 n). Doing this for each stage of
the greedy algorithm yields the following:

Theorem 2.1. The one-dimensional min-k, max-workload, sectorization prob-
lem can be solved exactly in (deterministic) time O(kn log2 n), where k is the output
optimal number of sectors. Using a randomized algorithm, it can be solved in ex-
pected time O(kn log n).

Proof. We have described the algorithm and its running time already. In order
to justify the correctness of the algorithm, consider an optimal partition X∗ =
{x∗

1, x
∗

2, . . . , x
∗

k∗}. Let the output of the greedy solution be X = {x1, x2, . . . , xk}.
Let i be the first index for which x∗

i 6= xi. If x∗

i > xi, then xi could not have
been the greedy output, since we could have pushed xi further to the right (to x∗

i )
without violating the budget constraint B. Thus, x∗

i < xi. Now, we can replace
x∗

i with xi in X∗. The workload of the sector [x∗

i−1 = xi−1, x
∗

i = xi] clearly cannot
exceed the budget B (since the greedy sectors must be feasible), and the workload
of the sector [x∗

i , x
∗

i+1] only went down with the replacement of x∗

i with xi > x∗

i .
Continuing this argument, we convert solution X∗ into solution X, proving that
the greedy algorithm produced an optimal partition.

1

T

xx1 i
x

t B=2

Fig. 2. Sweeping ℓ (red) rightwards. The hollow (blue) circles indicate critical points where the

max-workload might increase as ℓ sweeps.

min-B, max-workload. We are given an allowed number k of sectors and wish
to determine a set of partition points, x1, . . . , xk−1, xk = 1, of [0, 1] in order to
minimize the maximum workload, B = maxi w(σi). We do this optimization using
binary search, using the min-k solution above to test a particular value, B′, of
(integer) budget B. Note that the optimal B∗ must lie between 1 and B0 ≤ n,
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where B0 is the maximum number of segments of S intersected by a horizontal
line. For each test value B′, we run the greedy algorithm to determine the optimal
number of sectors, k∗(B′), subject to budget B′. If k∗(B′) > k, then we know
that B∗ < B′; otherwise, we know that B∗ ≥ B′. The binary search concludes in
O(log n) steps, so we get

Theorem 2.2. The one-dimensional min-B, max-workload, sectorization prob-
lem can be solved exactly in (deterministic) time O(kn log3 n). Using a randomized
algorithm, it can be solved in expected time O(kn log2 n).

min-k and min-B, avg-workload. In the average workload case, we consider the
“cost” of a sector to be the time-average number of aircraft in a sector. Since the
time-average w̄(σi) for sector σi = (xi−1, xi) is simply the sum, (1/T )

∑
s∈S µσi

(s),
of the lengths µσi

(s) of the t-projections of the segments s ∈ S clipped to sector
σi, each of which varies linearly with xi, we see that the function f(x) = w̄((xi, x))
that measures the time-average workload of the interval (xi, x) is a piecewise-linear
(and continuous) function of x. The function f(x) has breakpoints that correspond
to the x-coordinates of endpoints of S. For the min-k avg-workload, k is exactly

equal to ⌈(1/T )

∑
s∈S

µ(s)

B
⌉, where µ(s) is the length of the t-projection of segment s.

The sector (interval) boundaries can be determined by greedily scanning from left
to right the O(n) possible critical values of x, between which the function f(x) has
an easy-to-describe (linear) formula, which we can threshold against the budget B.
Thus, the overall running time becomes just O(n log n + k) for the min-k problem.
For the min-B version, the avg-workload of each of the k sectors will be exactly

(1/T )

∑
s∈S

µ(s)

k
, and the running time of the algorithm to determine the sector

boundaries remains the same, i.e., O(n log n + k). The correctness of the greedy
approach is proven similarly as before and is omitted here. In summary,

Theorem 2.3. The one-dimensional min-k (and min-B), avg-workload, sector-
ization problem can be solved exactly in time O(n log n + k), where k is the output
optimal number of sectors.

Remark. Note that the min-B problem is (trivially) always feasible, both for
max-workload and for avg-workload. The min-k problem is always feasible for avg-
workload and, for max-workload, it is feasible and results in a finite k provided
that B is at least as large as δmax, the maximum number of segments of S passing
through a common point. (If B < δmax, no partitioning in the immediate x-
vicinity of the high-degree vertex will suffice to meet the (max-workload) budget
constraint; if B = δmax, then there needs to be an infinite sequence of partition
points, converging on the x-coordinate of the high-degree vertex.)

3. THE SECTORIZATION PROBLEM IN TWO DIMENSIONS

In contrast with prior work on partitioning sets of (static) points in the plane, or
elements of an array (e.g., see [Khanna et al. 1998; Khanna et al. 1997; Muthukrish-
nan et al. 1999; Muthukrishnan and Suel 2005]), our sectorization problem involves
a third dimension (time): The input data consists of a set S of trajectories, which
correspond to t-monotone polygonal chains in (x, y, t)-space. We let n denote the
number of trajectories, and N the total number of waypoints (vertices) in the full
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set of n trajectories. Given a domain of interest, D ⊂ ℜ2, we are to partition it
into a small number of sectors, each of which has a small workload. As in the 1D
problem, we can distinguish the min-k from the min-B problem, where k denotes
the number of sectors in the partition and B denotes an upper bound on either the
max-workload or the avg-workload of the sectors.

The max-workload for a sector σ ⊂ D is the maximum number of trajectories
intersected by a “horizontal” (in t) polygon of shape σ, sweeping vertically through
time, t ∈ [0, T ]. Another way to view the problem is to clip the 3D trajectories
to the vertical cylinder defined by σ, and project each clipped trajectory onto the
t-axis. The maximum depth of this set of intervals is the max-workload for σ; the
sum of the interval lengths, divided by T , is the avg-workload for σ.

3.1 Hardness

We expect that the sectorization problem in two (or more) dimensions is NP-hard
for most formulations of the problem. Here, we prove hardness of the special
case in which sectors are required to be axis-aligned rectangles, and the goal is to
minimize the max-workload upper bound B, subject to a bound k on the number of
sectors. Hardness follows from the result of Khanna, Muthukrishnan et al [Khanna
et al. 1998], who proved that the following problem is NP-hard (and also NP-hard
to approximate within a factor of 5

4 ): Given an n × n array A of integers, find
a rectangular partition of A into k rectangles, in order to minimize the maximum
weight of a rectangle. The weight here is defined to be the sum of the array elements
in the rectangle.

For a given instance of the array partitioning problem, we construct an instance
of the sectorization problem in the following manner. Consider a two-dimensional
n × n grid in the (x, y)-plane corresponding to the array A, with unit width for
each cell. Let ǫ = 1

n
. For each cell (i, j) of the array A (1 ≤ i ≤ n, 1 ≤ j ≤ n)

we denote the weight of the cell by wi,j . In the cell corresponding to (i, j), we put
wi,j tracks going from the left boundary to the right boundary in the time interval
[0, 1] and wi,j tracks going from the bottom boundary to the top boundary in the
time interval [1, 2]. The horizontal tracks are at a distance of (i − 1)ǫ from the
bottom boundary; similarly, the vertical tracks are at a distance (j − 1)ǫ from the
left boundary of the cell. See Figure 3.

Original Array A Dark lines show tracks

ǫ

2ǫ

ǫ 2ǫ

Fig. 3. Reduction from array partitioning to rectangular partitioning for a 3 × 3 array.
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For any solution for the array-partitioning problem, it is easy to see that there
exists a corresponding solution of the rectangular-partitioning problem that gives
the same solution in terms of workload. We need to show that any solution of
the rectangular-partitioning problem yields a solution for the array-partitioning
problem. First, we observe that if one of the rectangles in the solution has vertical
tracks from two horizontally adjacent cells corresponding to (i, j), (i, j + 1), then
its workload is at least wi,j + wi,j+1. This is because the distance between the
“bundles” of vertical tracks are at a distance of 1 + ǫ, so this implies that there is
a time instant t ∈ [0, 1] such that the horizontal tracks from both cells are present
in this rectangle. Similarly, if horizontal tracks are present in a rectangle from
two vertically-adjacent cells corresponding to (i, j), (i + 1, j), then the rectangle’s
workload is at least wi,j + wi+1,j . It is clear that if horizontal tracks are present
from two horizontally-adjacent cells, then the workload is either the sum or is equal
to that of one of the cells; a similar statement applies to vertical tracks from two
vertically-adjacent cells. The above discussion implies that we can always convert
a rectangular-partitioning solution to one that conform to the boundaries of the
grid, which then gives a solution to the array-partitioning problem. Thus, we have
the following theorem:

Theorem 3.1. The optimal sectorization problem (min-k or min-B) for parti-
tioning into rectangular sectors in two dimensions is NP-hard.

3.2 Heuristics for 2D Sectorization

Given the difficulty of solving the 2D sectorization problem exactly, we turn our
attention to heuristics for its solution. We consider the min-k version, in which a
budget B is given, and our goal is to partition D into a small number k of sectors.

Our heuristics for 2D sectorization are based on two forms of recursive parti-
tioning: binary space partitions (BSP) and pie-partitions. BSP algorithms have
been studied extensively in the computational geometry literature, starting with
the work of Paterson and Yao [Paterson and Yao 1990; 1992]. Pie-partitions are
based on a multi-way partition into cones having a common apex; see below. All of
our heuristics have the property that they guarantee convex sectors when applied
to a convex domain D.

The use of recursive partitions heuristics is both natural and theoretically mo-
tivated. For sectorizations based on BSP partitions whose cuts come from fixed
orientations (as ours do) with discretized intercepts (translations), we are able to
solve the min-k problem (for given budget B) optimally, as well as the min-B prob-
lem (for given k) using dynamic programming. A subproblem is defined by a convex
polygon having O(1) sides; by selecting an optimal cut from among a discrete set
of possibilities, and recursively optimizing on each side of the cut, we obtain an
optimal BSP-based sectorization. This sketches the proof of the following theorem:

Theorem 3.2. The min-k and min-B optimal fixed-orientation, discrete inter-
cepts BSP sectorization problem in 2D has an exact polynomial-time algorithm.

Proof. Let c be the number of fixed orientations and d be the number of fixed
intercepts (which may depend on the endpoints of the tracks). This gives us O(d2c)
possible (convex) polygons using these orientations and intercepts, since a polygon
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has at most two edges of any one of the c orientations. A subproblem of the dynamic
program is such a polygon P , and we maintain the optimal way to partition P in
an array. The algorithm for min-k, with given budget B is as follows (it returns
the number of sectors):

Partition mink(Polygon P )

(i). If the max-workload of the polygon is B, simply return 1.

(ii). Else, for each pair (o, i) of orientation and intercept, recursively solve the
subproblems corresponding to the two polygons (say P1 and P2) into which P is
divided by the cut corresponding to (o, i), and compute w(o, i) = Partition(P1) +
Partition(P2).

(iii). Return w(o, i), which is minimum over all choices of orientation and inter-
cept of a partitioning cut.

For min-B, given k we similarly have the following algorithm to compute optimal
workload:

Partition minB(Polygon P , k)

(i). If k = 1, simply return max-workload(P ).

(ii). Else, for each pair (o, i) of orientation and intercept, and every possible
way to partition k into k1 and k2 such that k = k1 + k2, recursively solve the two
polygons (say P1 and P2) into which P is divided by the cut corresponding to (o, i),
and compute B(o, i, k1, k2) = max{Partition(P1,k1), Partition(P2,k2)}.

(iii). Return B(o, i, k1, k2), which is minimum over all choices of orientation and
intercept of a partitioning cut, and k1 and k2.

It is easy to see why the above algorithms work. The first cut made by an optimal
solution on the polygon P , is one of the cuts that is considered by the algorithm, and
then the subproblems are recursively solved. Now look at the optimal solution on
either side of this cut. The subproblems solved recursively on either side can be only
better than this optimal solution. Moreover, the first cut found by the algorithm
did at least as well as this (optimal) cut. So the output from the algorithm is at
least as good as the optimal partitioning.

The running time of each algorithm is clearly polynomial in N (the total com-
plexity of the input trajectories) and d, for fixed c: There are O(dc) candidate
cuts for each of O(d2c) subproblems, and the evaluation of the workload associated
with a subproblem can be computed readily by truncating each trajectory at the
boundary of the subproblem and projecting onto the time axis.

If we do not restrict ourselves to BSP sectorizations, but still consider the class
of allowable cuts to lie on a discrete set of lines, of fixed (c) orientations and
discrete intercepts, then we can obtain a polynomial-time approximation algorithm
for the (non-BSP-based) min-k sectorization problem, using the fact that an optimal
sectorization can be converted into a BSP sectorization with a small factor increase
in the number of sectors: We simply apply the dynamic programming algorithm,
as above, to find the best BSP-based sectorization, and then appeal to the known
results on the size of a BSP partition of a set of (convex) objects to argue that
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the best BSP-based sectorization yields a number of sectors that is within a factor
of the number of sectors in an optimal (not necessarily BSP-based) sectorization.
In particular, this yields a 2-approximation for the rectangular (axis-parallel) case,
by the results of [Berman et al. 2000] on the BSP of a packing of axis-aligned
rectangles.

Throughout our discussion below, we will interchangeably use the term “weight”
and “workload” when referring to a sector.

3.3 BSP Heuristic

Rather than implement a relatively high-degree (dO(c)) polynomial-time dynamic
programming algorithm, as described in the previous section, we have chosen to
craft BSP heuristics based on computing a most balanced cut at each stage, which
is defined as follows. Given a node of the current BSP subdivision, with associated
sector σ, our algorithm finds a straight cut (from among a set of fixed orientations)
to partition the convex polygon σ into two subpolygons, in order to minimize the
maximum workload (either max-workload or avg-workload) of the two subpolygons.
This strategy leads to the following simple consequence in the avg-workload case
about the relative weights (workloads) of the sectors: In the final sectorization using
most balanced cut BSP, the ratio of the (avg-workload) weight of the heaviest
sector to the lightest sector is at most 2. In our experiments, as we describe
later, we have further refined the most-balanced cut method for avg-workload in
order to partition avg-workload exactly across the k sectors, while simultaneously
attempting to control the max-workload balance; see Section 5.2.

In order to find the most balanced cut, we use a discrete set of c allowable
orientations for our cut. For each orientation, we find the most balanced cut
with that orientation as follows. We project the line segments that make up the
trajectories onto a plane perpendicular to the cut orientation, resulting in the 1D
problem. We now use a binary search on the critical points (as defined in the
previous section) to find the most balanced cut in the 1D case. Thus, each step of
the BSP takes worst-case time O(N2c): O(N) for projecting the segments, O(N2)
for finding the critical points (which can be found in output-sensitive time, by
standard techniques), and then finally the binary search for the most balanced
cut. If we finally end up with K sectors, the entire procedure takes worst-case
O(KN2c) time (again, with corresponding speed-up for using an output-sensitive
segment intersection algorithm).

Since the calculation of the critical points becomes the bottleneck in this heuristic,
even if using clever means of implementing nearly output-sensitive algorithms, in
our experiments we decided to use a coarser set of points to search for the cut. We
refer to this set as the approximate critical set. We empirically decide the coarseness
of this set and prove experimentally that for the real track data, this works just as
well (in practice) as the original set of critical points and saves tremendously on
the execution time.

3.4 Avoiding Bad Aspect Ratios

The balanced BSP heuristic can clearly produce very skinny sectors, even while
producing sectors with well-balanced workloads. Skinny sectors can be undesirable
because air traffic passing through the sector may be in the sector for radically
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different time periods, depending on the orientation of the trajectory with the
diameter of the sector.

To address this issue, we use the aspect ratio of the sector we are subdividing
to guide us. For any rectangle, define α to be the ratio of the smaller side to the
larger side. (Note that aspect ratio is often defined to be 1/α.) For any sector
σ that we want to subdivide by the most balanced cut, we also use the following
constraint for the cut. Consider a bounding rectangle with the smallest α for the
region. We only consider cuts with an orientation within a small range of the
orientation of the smaller side of this rectangle. In our implementation, we use a
range of [θ − απ

2 , θ + απ
2 ], where θ is the orientation of the smaller side. Refer to

Figure 4 (top). However, this heuristic can still result in bad aspect ratios as shown
in the Figure 4 (bottom).

Fig. 4. Left: The allowable range for cut orientations is shaded. Right: A cut within the allowable
orientation range may result in a skinny polygon on the right.

We suggest another heuristic to circumvent this problem. We define β < 0.5 to
be a user-specified lower bound on α(σ), which our algorithm is expected to respect
in its decomposition. Given an orientation for the cut, we have to find a range for
the cut so that the resulting two polygons have α ≥ β. In our experiments we
naively search for this range by linearly searching through the approximate critical
set. This range may clearly not exist (for example, set β = 0.8 and consider a
square – no range exists for any orientation). However, for reasonable values of β
this seems to work quite well. Empirically, we observed that for β < 0.5, if the
original polygon has α ≥ β, this heuristic works extremely well.

3.5 Pie Cutting

In addition to the BSP cuts, we consider another cutting operation to allow for
more flexibility during sectorization. This is the so-called “pie-cut”. For this we fix
a point within the region (called the center) and an orientation. We now wish to
make a pie-cut which comprises three rays originating from the center. One of the
rays is along the designated orientation. The other two are such that the resulting
3 pieces are all convex and as well-balanced as possible. We accomplish this pie-cut
in two steps, obtaining one cut in each step. The line segments are first transformed
to their polar coordinates, in the following sense. Consider any point p with polar
coordinates (r, θ, z) with respect to the center and the given orientation (r is the
distance from the center, θ is the angle that the line through p and the center makes
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with the given orientation. This point is transformed to (θ, z), resulting again in
an instance of the 1D sectorization problem. Then a cut is found that divides the
workload in the ratio 1 : 2. Then the second cut is chosen with range restrictions
(so that the resulting regions are convex) to balance the workload in the 2

3 -sized
region. See Figure 5.

Allowable range for final cut

Fig. 5. Range constraints for pie cutting.

For greater flexibility and control over α, we also use the pie-cut operation with
more than 3 cuts. Note that it is not desirable for many sectors to meet at one
point (pie-cut center here) as it decreases the chance of an airplane to stay in a
sector for reasonable time, before leaving it. So there has to be an upper-bound on
how many cuts should be allowed in pie-cut operation and it can easily be added
as a constraint. If the current workload is W , and P = ⌊W/B⌋, we start with
max(P, 5) cuts and if any of the resulting regions has α less than the threshold, we
try with one less cut and so on, until we reach 3. At 3 however, even if one of the α
values are bad, we make the cut anyway to maintain convexity of the regions. This
is the disadvantage of pure pie-cuts. This can be remedied to a large extent if we
combine BSP cuts with Pie-Cuts. That is our motivation for the final heuristic.

3.6 The Final Heuristic

We formulate a method combining the operations of BSPs and Pie-Cuts. The Final
Heuristic first attempts to make a possible pie-cut. If the pie-cut is unable to find
a partition respecting the β threshold, we use a BSP cut. The new regions are
then inserted into a priority-queue according to the workloads. We recurse on the
heaviest region until all the regions have a workload less than B.

3.7 Other heuristics

Some other heuristics for 2D-partitioning are conceivable. For example, a parti-
tioning resembling the Voronoi regions of some predetermined centers. There does
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not seem to be sufficient evidence to suggest that such combinatorial structures
will optimize the workload as considered. A partitioning that does load balancing
amongst different sectors according to the definition of workload in this paper does
not seem to have any similarity to the structure of Voronoi regions. We feel our
heuristics are natural strategies to try and implement when trying to optimize a
function like the workload. A related, but perhaps of not much relevance, clustering
idea appears in [Har-Peled 2004].

4. EXPERIMENTAL SETUP

Implementation of our system GeoSect is done in C++ (Microsoft Visual Studio
6.0), using the OpenGL Graphics library for all visualizations. All three heuristics
(BSP, Pie-Cuts and the Final Heuristic) were implemented as described above. We
also implemented the capability to search over an approximate critical set of points
while solving the 1D problem to save some time while not compromising much on
the ability to balance workload. All experiments were run on machines with 3.2
GHz Pentium 4 processors and 1GB RAM. The GeoSect software is available
online at the url http://voronoi.ams.sunysb.edu/~gk/projects/GeoSect.

Data is provided to us by Metron Aviation. The historical track data corresponds
to a 25-hour period from 04:00, June 27 to 05:00, June 28, 2002, with 74588 flight
tracks, and the average complexity (number of bends) of each track is 59.26. See
Figure 1. We compare our results to existing sector data. (We are not using ultra
high-altitude sectors.) In evaluating sector workloads, both in our sectors and in the
existing sectors, we are assuming that all track data is relevant to the sectors. Note
that some fraction of the track data may correspond to ultra high-altitude sectors
and may not be relevant to the workload of the high-altitude sectors. Another
limitation of our test data is that it does not include a broad sample of different
traffic patterns, which may be impacted, e.g., by weather events.

5. EXPERIMENTAL RESULTS

5.1 Tuning the Parameters of the Heuristic

For best performance of our heuristics, we first tune the user-specified parameters
that are used at each stage of the heuristic. For tuning parameters in our heuristic,
we use 5 different sub-regions of the NAS, shown in Figure 6. The selection of the
regions was based on a visual inspection of the track data to correspond to both
high and low traffic regions.

5.1.1 BSP. We begin by selecting good choices of parameters for the BSP cuts.
Statistics were generated for Number of sectors and Max, Min, Average and Stan-
dard Deviation for Worst-case workload, Time-average workload, and aspect ratio
α, for each of the 5 sub-regions of the NAS (Figure 6, top). We summarize our
experimental findings:

—Number of discrete orientations while searching for the most balanced cut. We
generated the above statistics for the following set of values: {2, 4, 6, 8, 10, 12,
14, 16, 24, 32}. The statistics show that increasing the number of orientations
beyond 10 does not yield any significant change in the results. We choose to use
16 orientations in all future experiments.
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Fig. 6. Top: Regions used for tuning the parameters. Bottom: Regions used for testing the Final

Heuristic.

ACM Journal Name, Vol. 1, No. 1, 03 2009.



18 · Basu, Mitchell, and Sabhnani

—Discretization for balanced search in a given orientation. Ideally, we should use
the critical points of the projected tracks. However, as mentioned earlier, critical
point computation is expensive and we use the approximate critical set instead.
We examined the data for 5 different values of the discretization parameter (spac-
ing between consecutive candidate cut lines): 0.1, 0.01, 0.001, 0.0001, 0.00001.
For values less than 0.001, there is only a very slight fluctuation in the results.
We pick value 0.0001 for our experiments.

—Choice of β for aspect ratio control. The goal is to obtain reasonably fat sectors
without compromising too much on the quality of the sectorization (number
of sectors, workload balance etc.). We experimented with 10 uniformly spaced
values between 0.01 and 0.4 for the value β. Arbitrary small fluctuations are
observed in the range 0.01 to 0.2. The experiments suggest predictable behavior
for β ≥ 0.2. In the results below (Figure 9) we show the effect of different choices
of β on the final workload balancing.

Some results are presented in Figure 7. Here, we subdivide to balance the
worstcase workload. We can see that the BSP cuts achieve highly balanced sec-
tors in terms of workloads as reflected by the standard deviation of the worstcase
workload. We could instead choose to balance the time-average workload, which
would result in better standard deviation statistics for the time-average case. By
the nature of the heuristic, we have a guarantee on the minimum value of α.

Region WorstcaseWorkload

Max Avg. Std.Dev.

1 5 4.237 0.501

2 5 4.571 0.564

3 5 4.559 0.537

4 5 4.442 0.573

5 5 4.414 0.553

Region T imeAverageWorkload

Max Avg. Std.Dev.

1 0.891 0.344 0.133

2 0.893 0.403 0.151

3 0.766 0.409 0.138

4 1.206 0.405 0.169

5 0.771 0.351 0.142

Region α

Avg. Min Std.Dev.

1 0.572 0.350 0.139

2 0.609 0.350 0.156

3 0.593 0.350 0.148

4 0.591 0.350 0.141

5 0.587 0.350 0.149

Fig. 7. BSP results for the 5 regions after parameter tuning.
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5.1.2 Pure Pie-Cut. The only decision parameter for this class of heuristics
is how to choose the orientation for the first cut of the pie. We compared two
choices: (1) Use the α restriction, as in BSP cuts, i.e. the first cut is approximately
perpendicular to the diameter; and, (2) Choose a random orientation uniformly
in [0, 2π]. The aspect ratio readings fluctuate unpredictably for both cases. This
happens because 3-pie cuts can result in regions with very bad aspect ratios, as
mentioned previously.

5.1.3 The Final Heuristic. We use the parameter choices described in the pre-
vious two subsections (for BSP and Pie-Cut methods) in our experiments with the
Final Heuristic.

5.2 Achieving the Balancing

The main goal is to balance the time-average workload across all of the sectors
while controlling the worstcase workload and also the aspect ratios of the sectors.
It is easy to see that one can exactly balance the time-average workload, i.e. given
k, the number of sectors, it is possible to achieve sectors with workload exactly
equal to the total workload divided by k. We control the worstcase workload
by iteratively choosing the sector with the maximum worstcase workload as the
candidate for splitting. Also, since we know the target workload for individual
sectors(the total workload divided by k), we restrict ourselves to cuts that preserve
integer multiples of target workload on both sides. For example, if we want to
split a region with time-average workload 9 into 3 sectors, we do not split it into
4.5-4.5; we instead restrict to cuts that split it in 3-6 or 6-3, so that later the
sector with time-average workload 6 can be split in 3-3. The aspect ratio of the
sectors is controlled, as described previously, by avoiding the cuts that result in
bad aspect ratios. There definitely is a trade-off between preserving good aspect
ratios and optimally balancing the sectors. This trade-off is indicated in the results
in Figure 9.

5.3 Comparing the Final Heuristic with Existing Sector Data

In our comparisons of our Final Heuristic with the original sectors, experiments
were conducted for two types of geographical domains: (1) [“Domain 1”] a specific
convex polygonal region, C, selected to contain approximately 10 current sectors;
and (2) [“Domain 2”] a large convex polygonal region, U , selected to contain all
of the continental USA. To be as accurate as possible, we purposely select these
regions so that they closely match existing boundaries of the sectors. See Figure 6.

When computing statistics for the original sectors, we consider only the sectors
that are completely inside the domain of interest. While we compute both time
average workloads and worstcase workloads of the sectorizations we compute, the
partitioning in each of the reported experiments was done by choosing cuts in order
to balance the time-average workload.

5.3.1 Results for “Domain 1”. Both the BSP method and the Final Heuristic
performed well in comparison with the original sector data. The statistics for
one of the regions are shown in Figure 8. Our heuristic achieves a significant
improvement (by a factor of 10) over the original sectors in the standard deviation
of the workloads and decreases substantially the maximum workload, while using

ACM Journal Name, Vol. 1, No. 1, 03 2009.



20 · Basu, Mitchell, and Sabhnani

the same number of sectors and having comparable average workloads. The average
workloads are slightly higher for our heuristic because it is applied to a convex
domain (Domain 1), which is slightly larger than the union of the original sectors;
thus, while the average workload for original sectors is computed on only those
original sectors fully contained within the domain, the average workload of the
sectors we compute includes all travel within the domain, since our sectors perfectly
partition Domain 1. The BSP results are shown as well. This experimentally
supports our claim that our heuristics achieve highly balanced workloads, while
avoiding skinny sectors.

Sectorization No. of Time Average Workload
Sectors Max Avg. Std.Dev.

Original Sectors 10 12.33 6.899 2.578

Final Heuristic 10 7.289 7.226 0.054

BSP 10 7.9525 1.226 0.302

Sectorization No. of Worstcase Workload
Sectors Max Avg. Std.Dev.

Original Sectors 10 44 26.8 8.340

Final Heuristic 10 30 27.9 1.221

BSP 10 31 27 2.323

Sectorization No. of α

Sectors Avg. Min Std.Dev.

Original Sectors 10 0.548 0.264 0.169

Final Heuristic 10 0.534 0.323 0.159

BSP 10 0.522 0.25 0.171

Fig. 8. The statistics for pure BSP, the Final Heuristic and the original sectors for Domain 1.

5.3.2 Results for “Domain 2”. As with Domain 1, in the Domain 2 (full NAS)
experiments, we computed statistics only for those original sectors that are fully
contained within Domain 2. In running our methods, we used the same number
(411) of sectors as there were original sectors in Domain 2 (except that for Pie-Cut
it was 412, due to the nature of the combinatorics of Pie-Cut partitions). Results
are tabulated in Figure 9.

Clearly the Final Heuristic and the BSP give very nicely balanced sectors, while
avoiding skinny (low aspect ratio) sectors, since they are constrained to have aspect
ratios α ≥ β. (For the original sectors, we list the value of β as 0, since there is no
explicit aspect ratio bound on them.) Notice that as β is increased, our partitioning
algorithms become more constrained, thereby decreasing their ability to achieve
workload balancing (and increasing the standard deviations of the workloads).

The standard deviations of workloads produced by our methods are about an
order of magnitude better than the standard deviation of the workloads for the
original sectors. Also, the maximum value of worstcase and time-average workloads
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Sectorization β Time Average Workload
(α ≥ β) Max Avg. Std.Dev.

Original Sectors 0 24.519 6.283 3.378

Final Heuristic 0.15 7.335 6.365 0.157

Final Heuristic 0.25 9.283 6.365 0.294

Final Heuristic 0.30 8.938 6.365 0.457

BSP 0.15 7.343 6.365 0.0715

BSP 0.25 9.568 6.365 0.426

BSP 0.30 9.545 6.365 0.512

Pie-Cut 0 11.085 6.35 2.901

Sectorization β Worstcase Workload
(α ≥ β) Max Avg. Std.Dev.

Original Sectors 0 87 24.569 10.437

Final Heuristic 0.15 39 25.297 2.586

Final Heuristic 0.25 34 25.253 2.539

Final Heuristic 0.30 40 25.426 2.939

BSP 0.15 34 25.207 2.567

BSP 0.25 36 25.11 2.882

BSP 0.30 35 25.1 2.849

Pie-Cut 0 47 25.041 8.812

Sectorization β α

(α ≥ β) Avg. Min Std.Dev.

Original Sectors 0 0.316 0 0.241

Final Heuristic 0.15 0.45 0.15 0.185

Final Heuristic 0.25 0.506 0.25 0.152

Final Heuristic 0.30 0.532 0.30 0.151

BSP 0.15 0.588 0.15 0.188

BSP 0.25 0.60 0.25 0.181

BSP 0.30 0.578 0.30 0.164

Pie-Cut 0 0.286 0.021 0.175

Fig. 9. The statistics for the original sectors, the Final Heuristic, pure BSP, and pure Pie-Cut for
Domain 2. The number of sectors was 411 in all cases except Pie-Cut, for which it was 412.

in the sectorizations produced by our methods is better than the corresponding
values for the original sectors, by a factor between 2 and 3.

The Pie-Cut heuristic fails to keep the aspect ratio above the threshold and
actually gives very poor values for α. Still, though, it does balance the workload
better than the original sectors.

As with Domain 1, our average workloads are slightly higher for our heuristics
than for the original sectors, since our sectorizations completely cover Domain 2,
while the union of the original sectors for which workload is computed is a proper
subset of Domain 2. (This under-counting should not have much impact on the
variation in the workloads across sectors – the variation is the main subject of our
investigation in load balancing.)
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Our heuristics methods are thus seen to be very effective in global sectorization,
in terms of balancing workload and producing sectors with good aspect ratios.

Refer to Figure 10 and Figure 11 for some screenshots of the sectorizations we
compute.

5.4 Comparison with a Mixed Integer Programming Method

We have directly compared our Final Heuristic with a leading sectorization method
based on formulating the problem as a Mixed Integer Program (MIP) [Yousefi
2005]. The MIP method considers the domain of interest to be a union of small
regular hexagonal cells. It then formulates the optimization problem as a MIP for
clustering cells in order to optimize the “coordination workload” (the number of
times a flight crosses a sector boundary), while constraining the maximum deviation
in the average workload per cluster (sector) of cells. In Figure 12 we tabulate the
results of our comparison for sectorizing ZFW (Dallas) center. The objective of
the Final Heuristic in this experiment was to balance the average workload while
keeping the aspect ratio of the sectors at least 0.30

We see that the Final Heuristic does a better job at balancing the average work-
load of the resulting sectors and keeping their aspect-ratios high. The MIP method,
though, did a better job of minimizing the worstcase workload. One practical is-
sue with the MIP method is that the resulting sectors have irregular boundaries,
since the sectors correspond to unions of hex-cells; this is often addressed by doing
a post-processing (polygonal simplification) of the sector boundaries, possibly at
some cost in optimality. The running-time of the MIP method is also considerably
higher than our methods described in this paper, since it relies on solving a complex
MIP (which is done using CPLEX). Refer to Figure 13 for the screenshots of these
comparison.

6. EXTENSIONS TO THE MODEL AND CONCLUSIONS

We have studied in detail the optimal sectorization problem that arises in air traffic
management, giving a theoretical formulation, algorithmic results in the 1D setting
and special cases of the 2D setting, and experimental results in the general 2D
setting.

Current and future work is aimed at extending our model and the implementa-
tion to take into consideration more of the factors that directly influence workload
complexity in quantifiable ways, such as the coordination workload (proportional
to how many flights cross the boundary of a sector), altitude changes, anticipated
conflict avoidance (to enforce separation standards), traffic mix (variety of aircraft),
angles of intersection between crossing flows, variation in headings, location of “hot
spots” (e.g., merge points) within sectors, holding patterns, etc (see [Wyndemere
1997] for more details). Already, GeoSect includes the option to optimize a linear
combination of workload and coordination workload (which accounts for the num-
ber of times a flight must be “handed off” between controllers). Preliminary ex-
periments show that, by optimizing a linear combination of time-average workload
(weighted 0.7) and coordination workload (weight 0.3) we are still able to balance
the the time-average workload while preserving similar coordination workloads as
the original sectors.

Another important direction in which we have extended our model is to account
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Fig. 10. Partition results for Domain 1. Top: Original sectors. Middle: Final Heuristic partition.

Bottom: BSP.
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Fig. 11. Partition results for the continental USA (Domain 2). From Top (i) original sectors

(411) strictly within the selected region, (ii) Final Heuristic partition (411 sectors), (iii) BSP (411
sectors), (iv) Pie-Cut partition (412 sectors).
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Sectorization No. of Time Average Workload
Sectors Max Avg. Std.Dev.

IP Method 18 5.408 4.184 0.658

Final Heuristic 18 5.158 4.771 0.194

Sectorization No. of Worstcase Workload
Sectors Max Avg. Std.Dev.

IP Method 18 20 16.611 2.059

Final Heuristic 18 23 18.167 2.034

Sectorization No. of α

Sectors Avg. Min Std.Dev.

IP Method 18 0.442 0.210 0.148

Final Heuristic 18 0.600 0.319 0.173

Fig. 12. The statistics for the MIP solutions and the Final Heuristic for sectorizing ZFW (Dallas)

center.

for constraints in the NAS that affect the shapes of sectors. The “odd” shapes of
current sectors arise not only from historical artifacts but also partly from certain
domain constraints on sector boundaries so that, e.g., they do not pass through
certain regions of special use airspace (SUA) or pass too close to airports, etc. We
have extended our model to include such constraints, allowing the partitioning to
be done only with cuts that avoid specified constraints. In order to make a richer
set of cuts available, we then also permit a cut to be a polygonal chain (based
on a shortest constraint-avoiding path that has a limited number of bends) rather
than a straight segment; thus, the sectors obtained no longer constitute a BSP, and
sectors may be non-convex. We are implementing this feature into GeoSect for
future experimentation; results will be reported elsewhere.

More investigation is needed on other track data too. We plan to run experi-
ments with GeoSect on track data given by wind-optimized routing data. Future
experiments will also address the more complex problem in the terminal area, for
which generalizations to three dimensions will be necessary. In principle, our tech-
niques apply to 3D sector design; we have, in fact, started to experiment with a 3D
version of GeoSect, allowing cuts at constant altitude levels.

On the theoretical side, it would be interesting to investigate further provable ap-
proximation algorithms for the 2-dimensional sectorization problems studied here.
Also, is it possible to give a deterministic O(n log n) algorithm to compute the
lowest vertex of a k-level in an arrangement of lines or line segments?
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