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panion program, implemented in the open-source computer algebra package
Sage, provides an updated compendium of known extreme functions.
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This is the second part of the survey by the authors on recent progress
in the infinite group problem. This part presents some of the exciting new
discoveries in the structure of valid functions for the infinite group problem
and algorithms to test their fundamental properties. We refer to the defini-
tions, concepts and results from Part I using labels consistent with Part I. For
example, Theorem 2.13 refers to the corresponding theorem from section 2 in
Part I. Moreover, the citations made in this part are to be found in References
from Part I with the corresponding number. Finally, the numbering of the
sections in this part is a continuation of the numbering used in Part I, so this
part consists of sections 5, 6, 7 and 8.

As a prelude to the results presented in this second part, we give a quick
proof of the classical result that the Gomory Mixed-Integer (GMI) function
for the one-dimensional (k = 1) infinite group problem is extreme. The GMI
function, defined for any f ∈ (0, 1), is a continuous piecewise linear minimal
valid function for Rf (R,Z). It has a single breakpoint in (0, 1) at f ; see Figure 9
and also gmic in Table 1 in Part I.1 This extremality proof will not only
serve as an application of the machinery developed in Part I, but also expose
the basic skeleton of the arguments used in extremality proofs in this part –
see also the discussion in subsection 2.3 after Theorem 2.12. Of course, the
deeper theorems surveyed in the following sections require more sophisticated
techniques building on this general framework.

Let π be a minimal function of the type gmic. To show that π is extreme,
we analyze the additivity domain E(π) which is illustrated in green in Figure 9.

1. Assume π = 1
2 (π1 + π2), where π1, π2 are valid functions. We will proceed

to show that π1 = π and thus π1 = π2 = π, showing that π is extreme.
2. By Lemma 2.11 (i), π1, π2 are minimal and by Lemma 2.11 (ii), we have

inclusion of additivity domains, i.e., E(π) ⊆ E(π1) ∩ E(π2). Therefore,
F1, F2 ⊆ E(π1) where F1, F2 ⊆ E(π) are depicted in Figure 9.

3. Applying Theorem 4.3 [Convex additivity domain lemma, full-dimensional
version] with k = 1, f = g = h = π1 and F = F1, F2, we see that π1 is
affine over the open intervals (0, f) = int(p1(F1)) and (f, 1) = int(p1(F2))
(see section 4 [Part I] for notation).

1 The function is available in the Electronic Compendium [70] as gmic.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
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Fig. 9 A diagram of a function of the type gmic (blue graphs on the top and the left)
and its polyhedral complex ∆P (gray solid lines), as plotted by the command plot_2d_

diagram(gmic(f=2/3)). There are three combinatorial types of these diagrams, depending
on whether f < 1

2
, f = 1

2
, or f > 1

2
. No matter what f is, the additivity domain E(π) is

the union of the faces F1 = F ([0, f ], [0, f ], [0, f ]) and F2 = F ([f, 1], [f, 1], [1 + f, 2]), shaded
in green. At the borders of each diagram, the projections pi(F ) of two-dimensional additive
faces are shown as gray shadows: p1(F ) at the top border, p2(F ) at the left border, p3(F )
at the bottom and the right borders.

4. By Lemma 2.11 (iv), π1 is (Lipschitz) continuous. Moreover, by Theo-
rem 2.6, π1(0) = 1 and π1(f) = 1. Combining this with the fact that π1 is
affine over (0, f) and (f, 1), we obtain that in fact π1 = π.

5 Sufficient conditions for extremality in the k-row infinite group
problem

5.1 The (k + 1)-Slope Theorem

The fact that gmic is extreme also follows from the classic Gomory–Johnson
2-Slope Theorem (Theorem 2.13), which states that for k = 1, if a continuous
piecewise linear minimal valid function has only 2 slopes, then it is extreme.
An analogous 3-Slope Theorem for k = 2 was proved by Cornuéjols and Moli-
naro [31]. We present here the (k+ 1)-Slope Theorem for the case of general k
by Basu, Hildebrand, Köppe and Molinaro [21], along with the main ingredi-
ents of its proof.

Theorem 5.1 ([21, Theorem 1.7]) Let π : Rk → R be a minimal valid
function that is continuous piecewise linear and genuinely k-dimensional2 with
at most k + 1 slopes, i.e., at most k + 1 different values for the gradient of π
where it exists. Then π is extreme and has exactly k + 1 slopes.

2 See Definition 3.7.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+plot_2d_diagram(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+plot_2d_diagram(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
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The proof will follow the basic roadmap of subsection 2.3 and use Lemma 2.11
just like the proof of extremality of gmic above. We give an outline here, before
diving into the details. For the rest of this section, π is a continuous piecewise
linear minimal function that is genuinely k-dimensional with at most k + 1
slopes. Let P be the associated polyhedral complex.

1. Subadditivity and the property of being genuinely k-dimensional is used to
first establish that π has exactly k + 1 gradient values ḡ1, . . . , ḡk+1 ∈ Rk.
This is a relatively easy step, and we refer to the reader to [21, Lemma
2.11] for the details.

2. Consider any minimal valid functions π1, π2 such that π = 1
2 (π1 + π2).

3. (Compatibility step) For each i = 1, . . . , k + 1, define Pi ⊆ P to be the
polyhedral complex formed by all the cells (and their faces) of P where
the gradient of π is ḡi. Show that there exist g̃1, . . . , g̃k+1 such that π1 is
affine over every cell in Pi with gradient g̃i.

4. (Gradient matching step) We then highlight certain structures of gen-
uinely k-dimensional functions with k + 1 slopes that lead to a system
of k(k + 1) equations that are satisfied by the coefficients of ḡ1, . . . , ḡk+1

and g̃1, . . . , g̃k+1. Then, it is established that this system of equations has
a unique solution, and thus, ḡi = g̃i for every i = 1, . . . , k + 1.

5. For every r ∈ Rk there exist µ1, µ2, . . . , µk+1 such that µi is the fraction of
the segment [0, r] that lies in Pi. Thus,

π(r) = π(0) +

k+1∑
i=1

µi(ḡ
i · r) = π1(0) +

k+1∑
i=1

µi(g̃
i · r) = π1(r).

This proves that π = π1 and thus, π = π1 = π2, concluding the proof of
Theorem 5.1.

Compatibility Step. The following observation is crucial:

Lemma 5.2 Let U, V ⊆ Rk be full-dimensional convex sets such that 0 ∈ U .
Let F = F (U, V, V )3. Then 0 ∈ p1(F ), V = p2(F ) = p3(F ) and p1(F ) is full-
dimensional. Furthermore, if π : Rk → R is such that π(0) = 0 and is affine
on U, V with the same slope, then F ⊆ E(π).

Proof By definition, p1(F ) ⊆ U, p2(F ), p3(F ) ⊆ V . Since 0 ∈ U and {0} +
V = V , we see that p2(F ), p3(F ) = V and 0 ∈ p1(F ). Now, let v ∈ int(V ).
Therefore there exists a ball B(v, ε) ⊆ V . Since U is full-dimensional, there
exist k-linearly independent vectors u1, . . . ,uk ∈ U with ‖ui‖ ≤ ε. But then
ui+v ∈ V . Therefore, ui ∈ p1(F ). Finally, since F is convex and the projection
of convex sets is convex, we have that p1(F ) is full-dimensional.

For the second part of the lemma, observe that there exist g ∈ Rk and δ ∈ R
be such that π(u) = g ·u (follows since 0 ∈ U and π(0) = 0) for all u ∈ U and
π(v) = g · v + δ for all v ∈ V . Then for any u ∈ U,v ∈ V with u + v ∈ V , we
have π(u) + π(v)− π(u + v) = (g · u) + (g · v + δ)− (g · (u + v) + δ) = 0. ut

3 See the definition in (3.9).

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
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The analysis of step (1) also shows that for every i = 1, . . . , k+1, there exist
Ci ∈ Pi such that 0 ∈ Ci (in other words, for every gradient value, there is a
cell containing the origin with that gradient). Fix an arbitrary i ∈ {1, . . . , k+1}
and consider any cell P ∈ Pi. By Theorem 5.2 with U = Ci and V = P , we
obtain that F = F (Ci, V, V ) ⊆ E(π). By Lemma 2.11 (ii), F ⊆ E(π1) and by
Lemma 2.11 (iii), π1 is continuous. By Theorem 4.3 and continuity of π1, we
obtain that π1 is affine on Ci and P with the same gradient. Since the choice
of P was arbitrary, this establishes that for every cell P ∈ Pi, π1 is affine with
the same gradient; this is precisely the desired g̃i.

Gradient matching step. The system for step (4) has two sets of constraints,
the first of which follows from the condition that π(f + w) = 1 for every
w ∈ Zk. The second set of constraints is more involved. Consider two adjacent
cells P, P ′ ∈ P that contain a segment [x,y] ⊆ Rk in their intersection. Along
the line segment [x,y], the gradients of P and P ′ projected onto the line
spanned by the vector y−x must agree; the second set of constraints captures
this observation. We will identify a set of vectors r1, . . . , rk+1 such that every
subset of k vectors is linearly independent and such that each vector ri is
contained in k cells of P with different gradients. We then use the segment
[0, ri] to obtain linear equations involving the gradients of π and π′. The fact
that every subset of k vectors is linearly independent will be crucial in ensuring
the uniqueness of the system of equations.

Lemma 5.3 ([21, Lemma 3.10]) There exist vectors r1, r2, . . . , rk+1 ∈ Rk
with the following properties:

(i) For every i, j, ` ∈ {1, . . . , k + 1} with j, ` different from i, the equations
ri · ḡj = ri · ḡ` and ri · g̃j = ri · g̃` hold.

(ii) Every k-subset of {r1, . . . , rk+1} is linearly independent.

The proof of Theorem 5.3 uses a nontrivial result known as the Knaster–
Kuratowski–Mazurkiewicz Lemma (KKM Lemma) from fixed point theory,
which exposes a nice structure in the gradient pattern of π. The KKM lemma
states that if a d-dimensional simplex is covered by d+ 1 closed sets satisfying
certain combinatorial conditions, then there is a point in the intersection of
all d+ 1 sets. This lemma is applied to the facets of a certain simplex S con-
taining the origin, where the closed sets form S ∩ Pi. The fixed points on the
k+1 facets of this simplex give the vectors r1, . . . , rk+1 from Theorem 5.3. The
bulk of the technicality lies in showing that the hypothesis of the KKM lemma
are satisfied by the gradient structure of π. A few more details are offered in
Figure 10.

We finally present the system of linear equations that we consider.

Corollary 5.4 ([21, Corollary 3.13]) Consider any k+ 1 affinely indepen-
dent vectors a1,a2, . . . ,ak+1 ∈ Zk + f . Also, let r1, r2, . . . , rk+1 be the vec-
tors given by Theorem 5.3. Then there exist µij ∈ R+, i, j ∈ {1, . . . , k + 1}
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Fig. 10 The geometry of the proof of Theorem 5.3. Each cone Ci (shaded in dark colors) is
the intersection of the halfspaces Hj (defined by the gradients ḡj) for j 6= i. Near the origin
(within the ball B(0, ε)), each point of Ci lies in the set Fi of points where the function π
has gradient ḡi (shaded in light colors). Picking points vi near the origin in the interior
of Ci, we construct a simplex ∆ with 0 in its interior. By applying the KKM Lemma to
each of its facets ∆i, we show the existence of the vectors ri with the desired properties.

with
∑k+1
j=1 µij = 1 for all i ∈ {1, . . . , k + 1} such that both g̃1, . . . , g̃k+1 and

ḡ1, . . . , ḡk+1 are solutions to the linear system

∑k+1
j=1 (µija

i) · gj = 1 for all i ∈ {1, . . . , k + 1},

ri · gj − ri · g` = 0 for all i, j, ` ∈ {1, . . . , k + 1} such that i 6= j, `,
(5.1)

with variables g1, . . . ,gk+1 ∈ Rk.

We remark that we can always find vectors a1,a2, . . . ,ak+1 ∈ Zk + f such
that the set a1, . . . ,ak+1 is affinely independent, so the system above indeed
exists. Property (ii) in Theorem 5.3 and the fact that a1, . . . ,ak+1 are affinely
independent can be used to show that (5.1) has either no solutions or a unique
solution. Since ḡ1, . . . , ḡk+1 is a solution, the conclusion is that the system has
a unique solution and so g̃j = ḡj for each j = 1, . . . , k + 1.

Remark 5.5 Along almost identical lines, one can show that a (k + 1)-slope
function π is a facet – this is done in [21]. The only difference is that the
continuity of π1 in the proof above was obtained easily via Lemma 2.11 (iii).
For the facetness proof, this continuity argument is slightly more involved.
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5.2 Construction of extreme functions with the sequential-merge procedure

Dey and Richard [38] gave the first examples of facets in higher dimensions by
combining facets from lower dimensions. We outline these concepts here. For
a more detailed discussion, we refer the reader to [38] and also the survey [65].

Let ϕ : R→ R be valid for Rfk+1
(R,Z) and π : Rk → R valid for Rf (Rk,Zk).

The sequential merge of ϕ and π is the function ϕ ♦ π : Rk × R→ R given by

(ϕ ♦ π)(x, xk+1) =
π(x)

∑k
i=1 fi + fk+1ϕ

(∑k+1
i=1 xi − π(x)

∑k
i=1 fi

)
∑k+1
i=1 fi

.

Here we assume, without loss of generality, that fk+1 ∈ (0, 1), f ∈ [0, 1)k \{0}.
The lifting space representation of a function π : Rk → R is given by [π]f (x) =∑k
i=1 xi − π(x)

∑k
i=1 fi.

4

Dey and Richard showed that the function (ϕ ♦ π)(x, xk+1) is a facet for
R(f ,fk+1)(Rk+1,Zk+1) provided that ϕ and π are facets, their lifting repre-

sentations are non-decreasing, and the perturbation spaces5 Π̄E(ϕ)(R,Z) and
Π̄E(π)(Rk,Zk) both contain only trivial solutions [38, Theorem 5]. They also
show how to extend these sequential merge facets to facets of the mixed-integer
problem [38, Proposition 15]. This produces a simple method to construct
facets in higher dimensions from facets in lower dimensions.

Some sequential merge functions can be projected as well. Let ξ : R → R
be the gmic function and let π : R → R be a valid function for Rf (R,Z). For
any n ∈ Z+ such that 0 < f < 1/n, we define the projected sequential merge
function π ♦1

n ξ : R → R as (π ♦1
n ξ)(x) = (π ♦ ξ)(nx, x). Provided that π

is a facet of Rf (R,Z) and [π]f is non-decreasing and Π̄E(π)(R,Z) has only
the trivial solution, we have that π ♦1

n ξ is a facet for Rnf (R,Z). See Table 5
for an example of a projected sequential merge inequality, dr_projected_

sequential_merge_3_slope. Also dg_2_step_mir from Table 1 can be seen
as the projected sequential merge function ξ♦1

n ξ. We can state this idea in the
following more general way. Consider (π1 ♦ (π2 ♦ . . . (πk−1 ♦ πk) . . .)), where

πi is a facet for Rf (R,Z) and [πi]f is non-decreasing, and Π̄E(πi)(R,Z) has
only the trivial solution for i = 1, . . . , k. Let n ∈ Z+ such that 0 < fk <

1
n .

Then (π1 ♦ (π2 ♦ . . . ♦ (πk−1 ♦ (πk ♦1
n ξ)) . . .)) is a facet for Rf ′(Rk,Zk) where

f ′ = (f1, . . . , fk−1, nfk) [38, Theorem 6].

6 Sequences of minimal valid and extreme functions

6.1 Minimality of limits of minimal valid functions

The most basic topology on the space RG of real-valued functions on G is the
product topology, or the topology of pointwise convergence. We first note that

4 This is a superadditive pseudo-periodic function in the terminology of [66].
5 See subsection 3.6.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir(%22
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the properties in the characterization of minimal valid functions (Theorem 2.6)
are preserved under pointwise convergence.

Proposition 6.1 ([39, Proposition 4]) Let πi ∈ RG, i ∈ N be a sequence6

of minimal valid functions that converge pointwise to π ∈ RG. Then π is a
minimal valid function.

Proof Since each πi is nonnegative, π is nonnegative. We simply verify the
conditions in Theorem 2.6 for π.

1. For any w ∈ S, π(w) = limi→∞ πi(w) = limi→∞ 0 = 0.
2. For any x,y ∈ G, π(x+y) = limi→∞ πi(x+y) ≤ limi→∞(πi(x)+πi(y)) =

limi→∞ πi(x) + limi→∞ πi(y) = π(x) + π(y).
3. For any x, π(x)+π(f−x) = limi→∞ πi(x)+limi→∞ πi(f−x) = limi→∞(πi(x)+
πi(f − x)) = limi→∞ 1 = 1.

ut

This result can be used to prove Proposition 2.7 regarding the compactness
of the set of minimal functions.

Proof (Proof of Proposition 2.7) Theorem 2.6 implies that all minimal valid
functions π satisfy 0 ≤ π ≤ 1. The set of functions in RG bounded between
0 and 1 is compact by Tychonoff’s theorem. Theorem 6.1 applies to nets of
minimal functions also, which is a generalization of sequences; this shows that
the set of minimal valid functions is a closed subset of the set of functions in
RG bounded between 0 and 1. As a closed subset of a compact set, the set of
minimal functions is compact. ut

6.2 Failure of extremality of limits of extreme functions

While minimality is preserved by limits, this is not true in general for ex-
tremality.

Dey and Wolsey [39, section 2.2, Example 2] give an example where a
sequence of continuous piecewise linear extreme functions of type gj_2_slope_
repeat converges pointwise to a discontinuous piecewise linear minimal valid
function that is not extreme (Figure 11).7

This convergence, of course, is not uniform. One may then ask whether
extremality is preserved by stronger notions of convergence. However, even
uniform convergence (i.e., convergence in the sense of the space C(R) of con-
tinuous functions) or convergence in the sense of the Sobolev space8 W 1,1

loc (R)
do not suffice to ensure extremality of the limit function (Figure 12).

6 The statement of Theorem 6.1 remains true for generalizations of sequential limits; for
example, we may consider the convergence of nets of minimal functions.

7 The sequence and its limit can be constructed using drlm_gj_2_slope_extreme_limit_

to_nonextreme.
8 See, for example, [57] for an introduction to Sobolev spaces.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope_repeat(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope_repeat(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_gj_2_slope_extreme_limit_to_nonextreme(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_gj_2_slope_extreme_limit_to_nonextreme(%22
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Fig. 11 A pointwise limit of extreme functions that is not extreme [39, section 2.2]. Consider
the sequence of continuous extreme functions of type gj_2_slope_repeat set up for any
n ∈ Z+ by h = drlm_gj_2_slope_extreme_limit_to_nonextreme(n). For example, n = 3
(left) and n = 50 (center). This sequence converges to a non-extreme discontinuous minimal
valid function, set up with h = drlm_gj_2_slope_extreme_limit_to_nonextreme() (right).
The limit function π (black) is shown with two minimal functions π1 (blue), π2 (red) such
that π = 1

2
(π1 + π2).

f 1

1

f 1

1

→
f 1

1

Fig. 12 A uniform limit of extreme functions that is not extreme. The sequence of
extreme functions of type bhk_irrational, set up with h = bhk_irrational_extreme_

limit_to_rational_nonextreme(n) where n = 1 (left), n = 2 (center), . . . converges to
a non-extreme function, set up with h = bhk_irrational_extreme_limit_to_rational_

nonextreme() (right). The limit function π (black) is shown with two minimal functions
π1 (blue), π2 (red) such that π = 1

2
(π1 + π2) and a scaling of the perturbation func-

tion π̄ = π1 − π (magenta).

Proposition 6.2 (New result ♣) There exists a sequence of continuous
extreme functions of type bhk_irrational [18, section 5] that converges uni-
formly to a continuous non-extreme function of the same type. Further, even
the sequence of generalized derivatives converges in the sense of L1

loc(R); thus

we have convergence in W 1,1
loc (R).

The functions from Theorem 6.2 have the intriguing property that ex-
tremality depends, in addition to some inequalities in the parameters, on the
Q-linear independence of two real parameters [18, Theorems 5.3 and 5.4].9

Thus it is easy to construct a sequence of parameters satisfying this condition
whose limit is rational, making the limit function non-extreme.10

9 These parameters are collected in the list delta, which is an argument to the function
bhk_irrational. The parameters are Q-linearly independent for example when one param-
eter is rational, e.g., 1/200, the other irrational, e.g., sqrt(2)/200. When the irrational
number is algebraic (for example, when it is constructed using square roots), the code will
construct an appropriate real number field that is a field extension of the rationals. In this
field, the computations are done in exact arithmetic.
10 Such a sequence and the limit can be constructed using bhk_irrational_extreme_

limit_to_rational_nonextreme.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope_repeat(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_gj_2_slope_extreme_limit_to_nonextreme(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_gj_2_slope_extreme_limit_to_nonextreme(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational_extreme_limit_to_rational_nonextreme(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational_extreme_limit_to_rational_nonextreme(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational_extreme_limit_to_rational_nonextreme(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational_extreme_limit_to_rational_nonextreme(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational_extreme_limit_to_rational_nonextreme(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational_extreme_limit_to_rational_nonextreme(%22
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6.3 Discontinuous extreme piecewise linear limit functions

Dey and Wolsey [39] give some general conditions under which the limit is
indeed extreme. Recall that a function π ∈ RR is called piecewise linear (not
necessarily continuous) if we can express R as the union of closed intervals
with non-overlapping interiors such that any bounded subset of R intersects
only finitely many intervals, and the function is affine linear over the interior
of each interval.

Theorem 6.3 ([39, Theorem 7]) Let πi ∈ RR, i ∈ N be a sequence of
continuous piecewise linear, extreme valid functions for Rf (R,Z) and let φ be
the pointwise limit of the sequence πi, i ∈ N such that the following conditions
hold:

(i) φ is piecewise linear (not necessarily continuous).
(ii) φ has a finite right derivative at 0.11

(iii) There is a sequence of integers ki, i ∈ N with limi→∞ ki =∞ such that for
each i ∈ N,

(a) φ(u) = πi(u) for all u ∈ 1
ki
Z and

(b) the set of nondifferentiable points of πi is contained in 1
ki
Z.

Then φ is extreme.

The authors of [39] use the above theorem to construct families of dis-
continuous piecewise linear extreme functions for the single-row infinite group
problem; see Table 3 for a list. The use of Theorem 6.3 does not seem to
be essential, however; the extremality of all of these functions can also be
established by following the algorithm of subsection 7.1.

6.4 Non–piecewise linear extreme limit functions

We now describe a construction based on limits of extreme functions that
yields an extreme function that is not piecewise linear. The extremality of this
limit function cannot be obtained by an application of Theorem 6.3 since the
limit function is not piecewise linear.

This construction is motivated by a conjecture of Gomory and Johnson
from 2003 that all facets are piecewise linear [49, section 6.1]. If true, this
would justify focusing attention on piecewise linear minimal valid functions,
for which we have developed many tools for analysis (see section 3). However,
even for k = 1, this conjecture was disproved by Basu, Conforti, Cornuéjols
and Zambelli [15]. We present their counterexample and a brief argument for
its extremality.

11 This can also be done with a finite left derivative. Note that not all extreme functions
have a finite left or right derivative at the origin. That is, there exist extreme functions that
are discontinuous on both sides of the origin. See Table 4 for examples.
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f 1

1

f 1

1

ε1 f 1

1

ε2 ε1 ε2

→
f 1

1

Fig. 13 First steps (ψ0 = gmic(), ψ1, ψ2) in the construction of the continuous non–
piecewise linear limit function ψ = bccz_counterexample().

Remark 6.4 The arguments for its facetness are almost identical; the only
difference is that some technical continuity arguments can be avoided in the
proof of extremality because of Lemma 2.11 (iii).

We first define a sequence of valid functions ψi : R→ R that are piecewise
linear, and then consider the limit ψ of this sequence, which will be extreme
but not piecewise linear.

Let 0 < f < 1. Consider a geometric sequence of real numbers ε1 > ε2 > . . .
such that ε1 ≤ 1− f and

µ− = (1− f) +

+∞∑
i=1

2i−1εi ≤ 1 (6.2)

holds.12 We distinguish two cases: µ− < 1 [15] and µ− = 1 [60]. An example
for the first case is the sequence εi = ( 1

4 )if for 0 < f ≤ 4
5 ; for the second

case, εi = 2( 1
4 )if for 0 < f ≤ 1

2 . Let ψ0 be the gmic function with peak at f .
We construct ψi+1 from ψi by modifying each segment with positive slope
in the graph of ψi in the manner of the kf_n_step_mir construction [59] as
follows.13 For every inclusion-maximal interval [a, b] where ψi has constant
positive slope we replace the line segment from (a, ψi(a)) to (b, ψi(b)) with the
following three segments:

– a positive slope segment connecting
(
a, ψi(a)

)
and

( (a+b)−εi+1

2 , ψi(
a+b

2 ) +
εi+1

2(1−f)

)
,

– a negative slope segment connecting
( (a+b)−εi+1

2 , ψi(
a+b

2 ) + εi+1

2(1−f)

)
and( (a+b)+εi+1

2 , ψi(
a+b

2 )− εi+1

2(1−f)

)
,

– a positive slope segment connecting
( (a+b)+εi+1

2 , ψi(
a+b

2 ) − εi+1

2(1−f)

)
and(

b, ψi(b)
)
.

Figure 13 shows the transformation of ψ0 to ψ1 and ψ1 to ψ2. Each ψi is
nonnegative, subadditive and satisfies the symmetry condition [15, Lemma 4.5
and Fact 4.6], and thus is a minimal valid function. By construction, the new

12 The first n terms of such a sequence of εi are generated by e = generate_example_e_

for_psi_n(n=n).
13 The construction of ψn is furnished by h = psi_n_in_bccz_counterexample_

construction(e=e), where e is the list [ε1, . . . , εn].

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bccz_counterexample(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kf_n_step_mir(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+generate_example_e_for_psi_n(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+generate_example_e_for_psi_n(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+psi_n_in_bccz_counterexample_construction(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+psi_n_in_bccz_counterexample_construction(%22


12 Amitabh Basu et al.

negative slopes match the existing negative slopes, and the new positive slopes
of each function have all the same slope. Thus ψi is a (continuous piecewise
linear) 2-slope function and hence extreme. The functions ψi are therefore
extreme functions by the Gomory–Johnson 2-Slope Theorem (Theorem 2.13).

The function ψ which we show to be extreme but not piecewise linear is
defined as the pointwise limit of this sequence of functions, namely

ψ(x) = lim
i→∞

ψi(x). (6.3)

This limit is well defined when (6.2) holds.14 In fact, ψi converges uniformly
to ψ. Since each ψi is continuous, this implies that ψ is also continuous.15 The
limit function has the following intriguing properties:

1. By Theorem 6.1, ψ is minimal.
2. For each integer i ≥ 0, define X−i to be the subset of points of [0, 1] on

which the function ψi is differentiable with a negative slope. From the
construction of ψi, X

−
i is the union of 2i open intervals [15, Fact 4.1].

Furthermore, X−i ⊆ X−i+1 for every i ∈ N. The set X− ⊆ [0, 1] defined by

X− =
⋃∞
i=0X

−
i is thus the set of points over which ψ has negative slope,

and it is an open set since it is the union of open intervals. The set X− is
dense in [0, 1] [15, Fact 5.4]. Its Lebesgue measure is µ−.

3. ψ is not piecewise linear. This is because each ψi is nonnegative, and there-
fore so is ψ. If ψ is piecewise linear, by definition of continuous piecewise
linear functions from subsection 3.1 there exists 0 < ε such that ψ is affine
linear on [0, ε]. Since X− is dense, there exists a point from X− in (0, ε)
and so ψ has negative slope on this entire segment. But since ψ(0) = 0,
this contradicts the fact that ψ ≥ 0.

4. The complement [0, 1] \ X− is a closed set, which does not contain any
interval; hence [0, 1] \X− is a nowhere dense set. It has Lebesgue measure
µ+ = 1− µ−. Removing from [0, 1] \X− the countably many breakpoints
of the negative-slope intervals, we obtain the set X+ = [0, 1] \

⋃∞
i=0 clX−i ,

which is still a nowhere dense set of measure µ+.
5. If µ− < 1, the set X+ is of positive measure, and thus a fat Cantor set ;

in this case the derivative of ψ exists for all points in X+ and equals the
limit of the positive slopes of the functions ψi. Thus ψ is an absolutely
continuous, measurable, non–piecewise linear “2-slope function.”

6. On the other hand, if µ− = 1, the measure of X+ is zero, and so the
derivative of ψ equals the negative slopes of the functions ψi Lebesgue–
almost everywhere. Thus ψ is a continuous (but not absolutely continuous),
measurable, non–piecewise linear “1-slope function.” This case is discussed
in [60].

14 The function can be created by h = bccz_counterexample(); however, h(x) can be
exactly evaluated only on the set

⋃∞
i=0 clNi defined below; for other values, the function

will return an approximation.
15 In fact, if µ− < 1, then ψ is actually Lipschitz continuous and thus absolutely continuous

and hence almost everywhere differentiable. The convergence then holds even in the sense
of the space W 1,1

loc (R).

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bccz_counterexample(%22
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The proof of extremality of ψ proceeds along the roadmap of subsection 2.3
as follows.

1. Consider any minimal valid functions π1, π2 such that ψ = π1+π2

2 . Since ψ

is affine over the segments in clX−i , the additivity properties on these seg-
ments are inherited by π1 using a one-dimensional version of Theorem 5.2
and Lemma 2.11 (ii).

2. One uses the Interval Lemma (Lemma 4.1) on π1 to obtain that π1 is affine
over X−, and moreover, since π1(0) = ψ(0) = 0 and π1(f) = ψ(f) = 1,
one recursively establishes that π1(x) = ψ(x) for all x ∈ X−.

3. SinceX− is dense in [0, 1], ψ is continuous and π1 is continuous by Lemma 2.11
(iii) we obtain that π1 = ψ. Therefore, π1 = π2 = ψ, establishing that ψ
is extreme.

We end this section with a conjecture about limits of minimal functions,
whose positive resolution would emphasize the importance of piecewise linear
functions.

Conjecture 6.5 ([15, Conjecture 6.1]) Every extreme function (resp. facet)
π : Rk → R is either piecewise linear or the limit of a sequence of piecewise
linear extreme functions (resp. facets).

7 Algorithmic characterization of extreme functions

In this section we discuss recent algorithmic results for proving piecewise linear
functions are either extreme or not extreme for the infinite group problem
Rf (Rk,Zk). In [18], the first algorithmic test for extremality was given for the
single-row infinite group problem Rf (R,Z), followed by an extension to two-
row infinite group problem Rf (R2,Z2) in [19]. We summarize these algorithmic
ideas here in two lights. We will first discuss a general procedure to test for
extremality and then in section 8 discuss specific classes of functions that have
relations to finite group problems where extremality can be tested easily using
linear algebra.

7.1 General procedure outline

We will outline here a general procedure for testing extremality of a continuous
piecewise linear function π : Rk → R defined on a polyhedral complex P.
Similar techniques may apply to testing extremality and even facetness of
discontinuous piecewise linear functions as well.

Let E = E(π). Recall that π is not extreme if and only if there exists a
nontrivial function π̄ such that π ± π̄ is minimal. From Lemma 2.11 parts (i)
and (ii) it follows that π is not extreme if and only if there exists a nontrivial
continuous function π̄ ∈ Π̄E(Rk,Zk) such that π ± π̄ is minimal.

Let T be a triangulation of Rk that satisfies the hypotheses of Lemma 3.14,
i.e., there exists q ∈ N such that vert(T ) = 1

qZ
k and pi(vert(∆T )) ⊆ 1

qZ
k for
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i = 1, 2, 3 and f ∈ 1
qZ

k. The following algorithmic ideas are based on the

decomposition in Lemma 3.14 part (2) of perturbations π̄ ∈ Π̄E(Rk,Zk) into
π̄ = π̄T + π̄zero(T ) with π̄T ∈ Π̄E

T (Rk,Zk) and π̄zero(T ) ∈ Π̄E
zero(T )(R

k,Zk).
Since π̄ and π̄T are continuous, π̄zero(T ) is also continuous.

7.1.1 Finite-dimensional linear algebra for Π̄E
T (Rk,Zk)

We begin by looking for a perturbation function in Π̄E
T (Rk,Zk). By Lemma 3.14,

π̄ ∈ Π̄E
T (Rk,Zk) if and only if π̄| 1

qZk ∈ Π̄E′
( 1
qZ

k,Zk) where E′ = E(π)∩ 1
qZ

k.

Thus we consider the linear system Π̄E′
( 1
qZ

k,Zk), which is finite-dimensional

if we identify the variables π̄(x) and π̄(x + t) for all t ∈ Zk. Hence, this is a
finite-dimensional linear system and any nontrivial solution can be computed
by analyzing the null space of this system. If such a nontrivial solution exists,
it can be interpolated to a piecewise linear function π̄ ∈ Π̄E

T (Rk,Zk) because
T is a triangulation of Rk that satisfies the hypotheses of Lemma 3.14, and so
by Theorem 3.13 π is not extreme. This is demonstrated in Figure 3 for the
case of T = P = P 1

qZ
where a perturbation is found on the complex T .

Otherwise we have that Π̄E
T (Rk,Zk) = {0}. This scenario is depicted in

Figure 15 where Π̄E′

P 1
q
Z
( 1
qZ,Z) = {0} with E′ = E(π) ∩ 1

qZ
2.

7.1.2 Projections and additivity for Π̄E
zero(T )(R

k,Zk)

From Lemma 3.14, any π̄ ∈ Π̄E
zero(T )(R

k,Zk) satisfies π̄| 1
qZk ≡ 0.

We consider full-dimensional faces F ∈ E(π,P). By Corollary 4.9, these
full-dimensional faces imply that any π̄ ∈ Π̄E

zero(T )(R
k,Zk) is affine on the pro-

jections p1(F ), p2(F ), and p3(F ). If a projection pi(F ) contains k + 1 affinely
independent points in 1

qZ
k, then we conclude that π̄|pi(F ) ≡ 0 on this projec-

tion. This is because π̄| 1
qZk ≡ 0. Therefore, we learn certain polyhedral regions

where π̄ vanishes and we record these.
In the next step, we consider any faces F of E(π,P) such that two of

p1(F ), p2(F ), p3(F ) are full-dimensional and one is zero-dimensional. In par-
ticular, if one of these full-dimensional projections intersects a region where π̄ is
zero, then that property is transferred to the other full-dimensional projection.
For example, the relations π(x) + π(t) = π(x + t) for all x ∈ I corresponds to
the face F = F (I, {t}, I+{t}) where p1(F ) = I, p2(F ) = {t}, p3(F ) = I+{t}.
Hence, if I is full-dimensional in Rk then I + {t} is full-dimensional in Rk.
In this way the function values of π̄ in I + {t} are dependent on the function
values on I. For example, if we know that π̄ is affine over I, then it is also affine
over I + {t}. This is the key step in this procedure. We continue transferring
properties until no new affine properties are discovered.

If the procedure terminates, it may either show that π̄ ≡ 0, in which
case π is extreme. Otherwise, we hope to find a perturbation function π̄ that
shows that π is not extreme. In fact, in certain cases, we can find a π̄ that is
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piecewise linear on a refinement of T . Showing termination of this procedure
is non-trivial and it is an open question under what conditions this procedure
is guaranteed to terminate. Subsections 7.2 and 7.3 discuss cases in which the
procedure provably terminates.

The above procedure only considers certain faces of E(π,P). Other faces
of E(π,P), as shown in Theorem 4.6, establish other affine properties about
π̄, but not necessarily full-dimensional affine properties. These properties can
sometimes combine to create full-dimensional affine properties. This effect is
investigated in the forthcoming paper [20] for the case of the two-row problem
and general continuous piecewise linear functions over the complex Pq.

7.2 One-row case with rational breakpoints

We will consider the one-dimensional polyhedral complex PB for B = 1
qZ ∩

[0, 1) as defined in Example 3.2; we will call this complex P 1
qZ

. Therefore, we

consider piecewise linear functions (possibly discontinuous) with breakpoints
in 1

qZ.

Theorem 7.1 ([18, Theorem 1.3]) Consider the following problem.

Given a minimal valid function π for Rf (R,Z) that is piecewise linear
with a set of rational breakpoints with the least common denominator q,
decide if π is extreme or not.

There exists an algorithm for this problem whose running time is bounded by
a polynomial in q.

Since the above algorithm is polynomial in the least common denominator q,
it is only a pseudo-polynomial time algorithm.

Open question 7.2 Does there exist a polynomial time algorithm to deter-
mine extremality of piecewise linear functions for Rf (R,Z)?

A more general version of the above algorithm is implemented in [56] for
the case of piecewise linear functions, which are allowed to be continuous or
discontinuous, and whose data may be algebraic irrational numbers.16 The
implementation will be described in more detail in a forthcoming article.

7.3 Two-row case using a standard triangulation of R2

For the case of the standard triangulations Pq of R2 (Example 3.3), [17, 19]
describe an algorithm of the above scheme for a special class of piecewise linear
functions over this complex, which are said to be diagonally constrained.

16 If h is the function π, e.g., after typing h = dg_2_step_mir(), then the algorithm is
invoked by typing extremality_test(h, show_plots=True). In the irrational case no proof
of finite convergence of the procedure is known.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+extremality_test(%22
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Fig. 14 A minimal valid, continuous, piecewise linear function over the polyhedral complex
P5, which is diagonally constrained (subsection 7.3). Left, the three-dimensional plot of the
function on D = [0, 1]2. Right, the complex P5, restricted to D and colored according to
slopes to match the 3-dimensional plot, and decorated with values v at each vertex of P5

where the function takes value v
4

.

Let

A =

[
1 −1 0 0 1 −1
0 0 1 −1 1 −1

]T
.

Then for every face I ∈ Pq, there exists a vector b ∈ 1
qZ

6 such that I = {x |
Ax ≤ b }. Furthermore, for every vector b ∈ 1

qZ
6, the set {x | Ax ≤ b } is a

union of faces of Pq (possibly empty), since each inequality corresponds to a
hyperplane in the arrangement Hq. The matrix A is totally unimodular and
this fact plays a key role in proving the following lemma.

Lemma 7.3 Let F ∈ ∆Pq. Then the projections p1(F ), p2(F ), and p3(F ) are
faces in the complex Pq. In particular, let (x,y) be a vertex of ∆Pq. Then x,y
are vertices of the complex Pq, i.e., x,y ∈ 1

qZ
2.

Extremality is more easily studied if we restrict ourselves to a setting de-
termined by the types of faces F ∈ Emax (π,Pq). Recall that

Emax (π,Pq) = {F ∈ E(π,Pq) | F is a maximal face by set inclusion in E(π,Pq) } .

Definition 7.4 A continuous piecewise linear function π on Pq is called di-
agonally constrained if for all F ∈ Emax (π,Pq) and i = 1, 2, 3, the projection
pi(F ) is either a vertex, diagonal edge, or triangle from the complex Pq.

The properties in Lemma 7.3 provide an easy method to compute E(π,Pq)
and test if a function is diagonally constrained by using simple arithmetic and
set membership operations on vertices of Pq.

Example 7.5 Figure 14 shows the complex P5 with an example of a minimal

valid continuous piecewise linear function on P5 with f =
( 2/5

2/5

)
that is periodic

modulo Z2. Note that, due the periodicity of the function modulo Z2, the values
of the function on the left and the right edge (and likewise on the bottom and
the top edge) of D = [0, 1]2 match.
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It can be checked that no relations appearing in the list of all maximal addi-
tive faces involve a vertical or horizontal edge; thus, the function is diagonally
constrained. See [19, sections 4.1 and 4.2].

Theorem 7.6 ([19, Theorem 1.8]) Consider the following problem.

Given a minimal valid function π for Rf (R2,Z2) that is piecewise linear
continuous on Pq and diagonally constrained with f ∈ vert(Pq), decide
if π is extreme.

There exists an algorithm for this problem whose running time is bounded by
a polynomial in q.

As before, this algorithm is only a pseudo-polynomial time algorithm.

Open question 7.7 For any fixed k, does there exist a polynomial time algo-
rithm to determine extremality of piecewise linear functions for Rf (Rk,Zk)?

Unlike in the one-row problem, even with all rational input, no algorithm is
known for determining extremality of piecewise linear functions for Rf (Rk,Zk)
for k ≥ 3 and, as mentioned in Theorem 7.6, only for certain cases is an
algorithm known for k = 2.

8 Algorithm using restriction to finite group problems

In this section, we discuss connections between infinite group problems and
finite group problems. We begin with a discussion of testing extremality for
finite group problems. Later we show that in certain settings, a function is
extreme for an infinite group problem if and only if its restriction to a finite
group is extreme for the finite group problem. Hence, this connection pro-
vides an alternative algorithm from those described in section 7 for testing
extremality and facetness.

8.1 Algorithm for finite group problem

When S has finite index in G, we call Rf (G,S) a finite group problem. As we
noted in Remark 2.1, Rf (G,S) and Rf (G/S, 0) are closely related by aggrega-
tion of variables, and it is convenient to study the finite-dimensional problem
Rf̄ (G/S, 0). The fundamental theorem of finitely generated abelian groups
shows that G/S ∼= ( 1

q1
Z × · · · × 1

qk
Z)/Zk for some qi ∈ N for i = 1, . . . , k.

Therefore, it suffices to consider G = 1
q1
Z × · · · × 1

qk
Z and S = Zk where

qi ∈ N. In the case of one row, G/S = 1
q1
Z/Z ∼= Z/q1Z is a cyclic group.

Cyclic group problems were originally studied by Gomory [45] and have been
the subject of many later studies. See [65] for an excellent survey on these
results.
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The set of minimal valid functions π : G/S → R is a (finite-dimensional)
convex polytope [45]. Extreme functions are thus extreme points of this poly-
tope. As we noted in subsubsection 2.2.4, standard polyhedral theory reveals
that extreme functions are equivalent to weak facets and facets. Furthermore,
extreme points of polytopes are characterized by points where the tight in-
equalities are of full rank. Therefore, testing extremality of a function for a
finite group problem can be done with simple linear algebra.

Note that there is a bijection between the minimal valid functions of
Rf (G,S) and minimal valid functions for Rf̄ (G/S, 0). This is because minimal
valid functions for Rf (G,S) are S-periodic functions by Theorem 2.6. Hence
the extremality test translates into the following statement about Π̄E(π)(G,Zk).

Theorem 8.1 Let G = 1
q1
Z × · · · × 1

qk
Z and let f ∈ G. Let π : G → R be

a minimal valid function for Rf (G,Zk). Then π is extreme if and only if
Π̄E(G,Zk) = {0} where E = E(π).

For any discrete group G ⊇ Zk and subgroup G′, the set Rf (G
′/Zk, 0) is

a face of the polyhedron Rf (G/Zk, 0). This observation implies the following
theorem via the above bijection.

Theorem 8.2 Let G = 1
q1
Z× · · · × 1

qk
Z, let G′ be any subgroup of G, and let

f ∈ G′. Let π : G→ R.

1. If π is minimal for Rf (G,Zk), then π is minimal for Rf (G
′,Zk).

2. If π is extreme for Rf (G,Zk), then π is extreme for Rf (G
′,Zk).

8.2 Restriction and interpolation in the one-row problem

Gomory and Johnson devised the infinite group problem as a way to study
the finite group problem. They studied interpolations of valid functions of
the finite group problems Rf ( 1

qZ,Z) in order to connect the problems, but
they never completed this program. Due to the ease of testing extremality in
the finite group problems, having this connection is useful for algorithms. We
encapsulate their results on this connection in the following theorem.

Theorem 8.3 ([47]) Let π be a continuous piecewise linear function with
breakpoints in 1

qZ for some q ∈ Z+ and let f ∈ 1
qZ.17 Then the following hold:

1. π is minimal for Rf (R,Z) if and only if π 1
qZ

is minimal for Rf ( 1
qZ,Z).

2. If π is extreme for Rf (R,Z), then π| 1
qZ

is extreme for Rf ( 1
qZ,Z).

Part (1) shows that minimality can be tested on just points in 1
qZ, while

part (2) yields a method of proving a function is not extreme. That is, if π| 1
qZ

is

not extreme for Rf ( 1
qZ,Z), then π is not extreme for Rf (R,Z). However, it is

17 Under these hypotheses, π is the continuous interpolation of π| 1
q
Z.
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not true in general that if π| 1
qZ

is extreme for Rf ( 1
qZ,Z), then π is extreme for

Rf (R,Z). See Figure 15 for an example. To obtain such a characterization, it
turns out that we must restrict to a finer grid. The first result in this direction
of relating the infinite and the finite group problems appeared in [39]; we state
it in our notation.

Theorem 8.4 ([39, Theorem 6]) Let π be a piecewise linear minimal valid
function for Rf (R,Z) with set B of rational breakpoints with the least common
denominator q. Then π is extreme if and only if the restriction π| 1

2nqZ
is

extreme for Rf ( 1
2nqZ,Z) for all n ∈ N.

The above condition cannot be checked in a finite number of steps and hence
cannot be converted into a computational algorithm, because it potentially
needs to test infinitely many finite group problems. In fact, this result holds
even when just considering n = 2.

Theorem 8.5 ([18, Theorem 1.5]) If the function π is continuous, then π
is extreme for Rf (R,Z) if and only if the restriction π

∣∣
1
4qZ

is extreme for the

finite group problem Rf ( 1
4qZ,Z).

This result demonstrates a tight connection between finite and infinite
group problems, and in particular, yields an alternative algorithm to Theo-
rem 7.1 for testing extremality. That is, to test extremality of π, simply test
if π| 1

4qZ
is extreme for Rf ( 1

4qZ,Z) using linear algebra, as discussed in subsec-

tion 8.1. To prove Theorem 8.5, the authors construct certain perturbations
functions that are piecewise linear with breakpoints in 1/4q. In fact, this re-
sult can be improved by a different choice of perturbation function, to have
the piecewise linear function have breakpoints in 1/3q, or 1/mq for any fixed
m ∈ Z≥3. This observation yields the following result for which we provide a
proof.

Theorem 8.6 (New result ♣) Let m ∈ Z≥3. Let π be a continuous piece-
wise linear minimal valid function for Rf (R,Z) with breakpoints in 1

qZ and

suppose f ∈ 1
qZ. The following are equivalent:

1. π is a facet for Rf (R,Z),
2. π is extreme for Rf (R,Z),
3. π| 1

mqZ
is extreme for Rf ( 1

mqZ,Z).

Proof As mentioned in subsection 2.2.4, facets are extreme functions [21,
Lemma 1.3], and hence 1⇒ 2. By Theorem 8.3, 2⇒ 3. We now show 3⇒ 1.

Set E = E(π). Let π| 1
mqZ

be extreme for Rf ( 1
mqZ,Z) and suppose, for the

sake of deriving a contradiction, that π is not a facet for Rf (R,Z). Then, by
the Facet Theorem (Theorem 2.12), Π̄E(R,Z) contains a nontrivial element
(see subsection 3.6). Since π| 1

mqZ
is extreme for Rf ( 1

mqZ,Z), by Theorem 8.1,

Π̄E′
( 1
mqZ,Z) = {0} for E′ = E ∩ 1

mqZ
2. By Lemma 3.14 part 1 with T =
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P 1
mqZ

, we have that Π̄T (R,Z) = {0}. Therefore Π̄E(R,Z) = Π̄E
zero(T )(R,Z).

Furthermore, Lemma 3.14 part 2 shows that

Π̄E(R,Z) = Π̄E(R,Z) ∩ {π̄ | π̄| 1
mqZ
≡ 0}. (8.4)

We divide E(π) by the faces of ∆P 1
qZ

using Lemma 3.12. For i = 1, 2, 3, define

Ei :=
⋃
{F ∈ E(π,P 1

qZ
) | dim(F ) = i }.

So E = E0 ∪ E1 ∪ E2.

Step 1. Remove E0: We claim that Π̄E(R,Z) = Π̄E1∪E2(R,Z)∩{π̄ | π̄| 1
qZ
≡ 0}.

First, for any π̄ ∈ Π̄E1∪E2(R,Z)∩{π̄ | π̄| 1
qZ
≡ 0}, we have that 1

qZ
2 ⊆ E(π̄).

Furthermore, since vert(∆P 1
q
) = 1

qZ
2, we have that E0 ⊆ 1

qZ
2. Therefore,

E0 ⊆ E(π̄). Hence π̄ ∈ Π̄E0∪E1∪E2(R,Z) = Π̄E(R,Z).

On the other hand, for any π̄ ∈ Π̄E(R,Z), trivially π̄ ∈ Π̄E1∪E2(R,Z).
From (8.4), we see that π̄ ∈ {π̄ | π̄| 1

qZ
≡ 0}.

Step 2. Remove E2: Define X :=
⋃
{pi(E2) : i = 1, 2, 3}. The set X is called

the “covered intervals” in [18]. We claim that Π̄E1∪E2(R,Z) ∩ {π̄ | π̄| 1
qZ
≡

0} = Π̄E1(R,Z) ∩ {π̄ | π̄| 1
qZ∪X

≡ 0}.
For any π̄ ∈ Π̄E1(R,Z) ∩ {π̄ | π̄| 1

qZ∪X
≡ 0}, we see that E2 ⊆ E(π̄) since

π̄|X ≡ 0. Therefore π̄ ∈ Π̄E1∪E2(R,Z) ∩ {π̄ | π̄| 1
qZ
≡ 0}.

On the other hand, let π̄ ∈ Π̄E1∪E2(R,Z) ∩ {π̄ | π̄| 1
qZ
≡ 0}. By Step 1

and (8.4), π̄| 1
mqZ

≡ 0. For any F ∈ E(π,P 1
qZ

) with dim(F ) = 2, by Theo-

rem 4.8 the function π̄ is affine on the projections int(pi(F )) for i = 1, 2, 3.
The projections pi(F ) are full intervals in the complex P 1

qZ
(see Figure 7).

In particular, their endpoints lie in 1
qZ. Thus, int(pi(F )) ∩ 1

mqZ contains at

least two points since m ≥ 3. Since π̄| 1
mqZ
≡ 0 and π̄ is affine on int(pi(F )),

it follows that π̄|int(pi(F )) ≡ 0. Furthermore, since the endpoints of pi(F )

are in 1
qZ, we also have that π̄|pi(F ) ≡ 0. Finally, since E2 is the union of

all F ∈ E(π,P 1
qZ

) with dim(F ) = 2, it follows that π̄|X ≡ 0, and hence

π̄ ∈ Π̄E1(R,Z) ∩ {π̄ | π̄| 1
qZ∪X

≡ 0}.

Step 3. Write down E1 relations: The additivity set E1 corresponds to one-
dimensional faces in ∆P 1

qZ
. These faces represent one the following two rela-

tions:

π(x) + π(t) = π(x+ t) for all x ∈ I,
π(x) + π(r − x) = π(r) for all x ∈ I,

for some I ∈ Pq and r, t ∈ 1
qZ. Since π̄| 1

mq
≡ 0, we have π̄(t) = 0 and π̄(r) = 0.

Considering this, we can find sets RI , TI ⊆ 1
qZ for every interval I ∈ P 1

qZ,
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(see Example 3.2 for notation P 1
qZ,

) such that

Π̄E(R,Z) =

π̄ : R→ R

∣∣∣∣∣
π̄(x) = 0 for all x ∈ X ∪ 1

qZ
π̄(x) = π̄(x+ t) for all x ∈ I, t ∈ TI , I ∈ P 1

qZ,
π̄(x) = −π̄(r − x) for all x ∈ I, r ∈ RI , I ∈ P 1

qZ,

 .

(8.5)
Note that taking TI ⊇ Z for all I ∈ P 1

qZ,
covers the periodicity conditions.

Step 4. Derive contradiction: We define the orbit O(x) = ({x} ∪ {−x}) + 1
qZ.

Thus, for any interval I ∈ P 1
qZ,

and x ∈ I, we have x + t, r − x ∈ O(x) for

all t ∈ TI , r ∈ RI . Notice that O([0, 1
2q ]) :=

⋃
x∈[0, 1

2q ]O(x) = R.

Let π̄ ∈ Π̄E(R,Z) such that π̄ 6≡ 0. By (8.4), π̄| 1
mqZ
≡ 0. Since π̄ 6≡ 0 and

O([0, 1
2q ]) = R, there exists an x0 ∈ [0, 1

2q ]\ 1
mqZ such that π̄|O(x0) 6≡ 0. Define

π̄x0 : R→ R as

π̄x0(x) =

{
π̄(x) if x ∈ O(x0),

0 otherwise.

The key idea here that we need to use is that in (8.5) the value of π̄ at x is
related only to the value at points in O(x). From that, it follows from (8.5) that
π̄x0 ∈ Π̄E(R,Z). We next will transform π̄x0 . By definition of x ∈ O(x0) we
have x = x0 + t for some t ∈ 1

qZ or x = −x0 + r for some r ∈ 1
qZ. If x0 ∈ 1

2qZ,
both decompositions are possible, but otherwise, only one such decomposition
is possible.

We now consider the orbitO( 1
mq ) = { 1

mq ,−
1
mq}+

1
qZ and define ϕ : O( 1

mq )→
R as

ϕ( i
mq + t) =

{
π̄x0

(x0 + t) if i = 1,

π̄x0
(−x0 + t) if i = −1,

for all t ∈ 1
qZ. The description of ϕ transfers values of π̄ in O(x0) to values in

O( 1
mq ). Since π̄|O(x0) 6≡ 0, we also have that ϕ 6≡ 0. Finally, define ϕ̄ : R→ R

as

ϕ̄(x) =

{
ϕ(x) if x ∈ O( 1

mq ),

0 otherwise.

Then, using the representation in (8.5), the fact that π̄x0 ∈ Π̄E(R,Z) implies
that ϕ̄ ∈ Π̄E(R,Z). But notice that ϕ̄| 1

mqZ
6≡ 0 since ϕ 6≡ 0 and O( 1

mq ) ⊆ 1
mqZ,

which contradicts (8.4). Therefore, we conclude that 3⇒ 1. ut

Figure 15 gives an example of a function π that is not extreme for Rf (R,Z),
but π| 1

qZ
is extreme for Rf ( 1

qZ,Z).

Using computer-based search, Köppe and Zhou [61] found a function that
is not extreme for Rf (R,Z), but whose restriction to 1

2qZ is extreme for

Rf ( 1
2qZ,Z).18 This proves the following result.

18 The function is available in the electronic compendium [70] as kzh_2q_example_1.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_2q_example_1(%22
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Fig. 15 This function (h = drlm_not_extreme_1()) is minimal, but not extreme (and hence
also not a facet), as proved by extremality_test(h, show_plots=True) by demonstrating
a perturbation. The red and blue perturbations describe the minimal functions π1, π2 that
verify that π is not extreme. These minimal functions necessarily have more breakpoints
than π. This is because π| 1

q
Z with q = 7, as depicted in the middle figure, is extreme

for the finite group problem Rf ( 1
q
Z,Z). However, π| 1

2q
Z is not extreme for Rf ( 1

2q
Z,Z).

The discrete perturbations, depicted on the right, are interpolated to obtain the continuous
functions π1, π2.

Proposition 8.7 (Köppe and Zhou [61]) The hypothesis m ≥ 3 in Theo-
rem 8.6 is best possible. The theorem does not hold for m = 2.

8.3 Restriction and interpolation for k ≥ 2

Some similar restriction results can be proved for the case of k rows, but
this area is much more open. Restrictions seem to require the use of nice
polyhedral complexes. The only results known are for the polyhedral complex
Pq (Example 3.3) in R2.

Theorem 8.8 ([19, Theorem 4.5 and Theorem 5.16]) Let π : R2 → R
be a continuous piecewise linear function over Pq and suppose f ∈ 1

qZ
2. Then

the following hold:

1. π is minimal for Rf (R2,Z2) if and only if π 1
qZ2 is minimal for Rf (

1
qZ

2,Z2).

2. If π is extreme for Rf (R2,Z2), then π| 1
qZ2 is extreme for Rf (

1
qZ

2,Z2).

For k ≥ 3 rows, it is unclear when similar results are possible.

Open question 8.9 Can Theorem 8.8 be generalized to other triangulations
of Rk for k ≥ 2?

In the special case of diagonally constrained functions in R2, there is a
similar result to Theorem 8.6.

Theorem 8.10 ([19, Theorem 1.9]) Let π be a minimal continuous piece-
wise linear function over Pq that is diagonally constrained and f ∈ vert(Pq).
Fix m ∈ Z≥3. Then π is extreme for Rf (R2,Z2) if and only if the restriction
π
∣∣

1
mqZ2 is extreme for Rf (

1
mqZ

2,Z2).

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_not_extreme_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+extremality_test(%22
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If we know that π is diagonally constrained, then this theorem produces an
alternative algorithm to Theorem 7.6 to test extremality of π by simply re-
stricting to 1

3qZ
2 and testing extremality in the finite dimensional setting. A

generalization of this theorem that removes the condition of being diagonally
constrained will appear in a forthcoming article [20].
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