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Abstract This is a survey on the infinite group problem, an infinite-dimen-
sional relaxation of integer linear optimization problems introduced by Ralph
Gomory and Ellis Johnson in their groundbreaking papers titled Some contin-
uous functions related to corner polyhedra I, II [Math. Programming 3 (1972),
23–85, 359–389]. The survey presents the infinite group problem in the mod-
ern context of cut generating functions. It focuses on the recent developments,
such as algorithms for testing extremality and breakthroughs for the k-row
problem for general k ≥ 1 that extend previous work on the single-row and
two-row problems. The survey also includes some previously unpublished re-
sults; among other things, it unveils piecewise linear extreme functions with
more than four different slopes. An interactive companion program, imple-
mented in the open-source computer algebra package Sage, provides an up-
dated compendium of known extreme functions.
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1 Introduction

The importance and utility of mixed-integer optimization algorithms and soft-
ware are widely acknowledged. The mathematical theory of cutting planes is
one of the workhorses of state-of-the-art software for mixed-integer optimiza-
tion. The historical development of cutting planes has seen surprising twists
and turns.

Cutting planes for specially structured combinatorial optimization prob-
lems came first. In their landmark 1954 paper [34], Dantzig, Fulkerson, and
S. Johnson spectacularly solved a (then) large-scale Traveling Salesman Prob-
lem using linear optimization with added cutting planes; see also [51].

Shortly after, Gomory began his seminal work [41–46] on general purpose
cutting planes for integer programming. Gomory’s integer rounding cuts, to-
gether with Chvátal’s later contributions, became a cornerstone of the theory
of cutting planes. Many hopes were set on this elegant theory, but eventually
the computational results disappointed. The overwhelming opinion in the com-
putationally minded community was that Gomory’s general purpose cutting
planes were a mathematical curiosity with not much practical value [29].

The 1970s saw important work on the polyhedral combinatorics for com-
binatorial optimization problems, which can be seen as a systematic continu-
ation of the early Dantzig–Fulkerson–Johnson work. Important examples in-
clude the work on the Stable Set Problem [25, 63, 64, 68] and the Knapsack
Problem [7, 69]. However, it took until the early 1980s for the method of
polyhedral combinatorics, combined with branch-and-bound, to become the
method of choice for solving hard combinatorial optimization problems. Again
it were computational breakthroughs for the Traveling Salesman Problem that
put the method in the spotlight [30, 32, 33, 52–55].

As a consequence, the prevailing paradigm in the 1980s and 1990s be-
came that in order to solve hard combinatorial and mixed integer optimiza-
tion problems, one needed to find classes of strong, preferably facet-defining,
problem-specific cutting planes and use them in combination with branch and
bound. Mixed integer solvers such as CPLEX allowed to deploy user-defined
cutting-plane separators via callback functions, for example.
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This picture changed in the mid 1990s when general purpose cutting planes,
including Gomory’s mixed integer cut [42], were demonstrated to be very ef-
fective with contemporary implementations of the simplex method, especially
when combined with branch-and-bound [8–10]. The newly discovered numeri-
cal efficacy came as a surprise to many. This discovery led to a revolution that
transformed mixed-integer optimization technology [29].

Subsequently, research activity on general purpose cutting planes increased
and gained equal prominence with the study of strong cutting planes for prob-
lems with special structure. A key turning point in the 2000s was the emphasis
on the so-called multi-row cuts, which hold the promise of making even further
breakthroughs in algorithms for solving large-scale mixed-integer programs.
This recent research is collectively referred to under the label of cut-generating
functions, a term coined by Cornuéjols et al. [26]. Although the nature of this
research is often very technical and theoretically inclined, the practical impact
of this work is expected to be big given the successful role played by Gomory’s
initial research in solving real-world problems [22].

A central problem and a driving force behind this line of work has been
the so-called infinite group problem (or infinite relaxation), introduced by Go-
mory and E. Johnson in two seminal papers in 1972 [47, 48]. In this sense, the
infinite group problem was a visionary contribution that anticipated this mod-
ern trend in integer programming decades earlier. To make further progress in
the elaborate research program of cut-generating functions, it is imperative to
understand the infinite group problem even better. The bulk of Gomory and
Johnson’s contributions were in the single-row infinite group problem, and un-
til recently the theory behind the multi-row infinite group problem was mostly
in the dark. With the modern focus on multi-row cuts within cut-generating
functions, it is very important to understand the multi-row infinite group prob-
lem. The last decade has seen some excellent progress in this question, and
this survey attempts to present this story.

1.1 Cut-generating function pairs

We begin with a quick overview of the cut-generating function approach to
unifying cutting plane theory. Let d ∈ N and I be a fixed subset of {1, . . . , d}.
A mixed-integer optimization problem of the form

max{ c · x | Ax = b, x ∈ Rd+, xi ∈ Z ∀i ∈ I } (1.1)

is first solved by ignoring the integrality constraints and using the simplex
algorithm. This leads to a simplex tableau reformulation:

A−1
B ANxN = A−1

B b − xB , xB∩I ∈ ZB∩I+ , xB\I ∈ RB\I+ ,

xN∩I ∈ ZN∩I+ , xN\I ∈ RN\I+

(1.2)

where the subscripts B and N denote the basic and non-basic parts of the
solution x and matrix A, respectively. The following change of notation will
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be convenient: let k = |B|, m = |N \I|, ` = |N∩I|, let R denote the submatrix
of A−1

B AN indexed by N \ I, P denote the submatrix of A−1
B AN indexed by

N ∩ I, and set S̄ = A−1
B b − (ZB∩I+ × RB\I+ ). Then in the new notation, we

describe system (1.2) as

XS̄(R,P ) :=
{

(s,y) ∈ Rm+ × Z`+ | Rs + Py ∈ S̄
}
. (1.3)

In the following, we will consider general systems of the form (1.3), where
m, ` ∈ Z+ and k ∈ N, R ∈ Rk×m and P ∈ Rk×` are matrices, and S̄ is a closed
subset of Rk such that 0 6∈ S̄. Instead of using the full simplex tableau (1.2),
one can as well consider relaxations of (1.2), for example by taking a subset
of the rows only. In the simplest case, one focuses on only one row, i.e., k = 1.

We denote the columns of matrices R and P by r1, . . . , rm and p1, . . . ,p`,
respectively. Given k ∈ N and S̄ ⊆ Rk, a cut-generating function pair (or
simply, cut-generating pair) (ψ, π) for S̄ is a pair of functions ψ, π : Rn → R
such that

m∑
i=1

ψ(ri)si +
∑̀
j=1

π(pj)yj ≥ 1 (1.4)

is a valid inequality (also called a cutting plane or cut) for the set XS̄(R,P ) for
every choice of m, ` ∈ Z+ and for all matrices R ∈ Rk×m and P ∈ Rk×`. We
emphasize that cut-generating pairs depend on k and S̄ and do not depend
on m, `, R and P . A priori it is not clear that such cut-generating function
pairs can exist. However, it has been observed that for many special cases
of model (1.3) the convex hull of points in XS̄(R,P ) can be completely de-
scribed using cut-generating functions, i.e., not only do they exist, but they
are sufficient for the purposes of optimization from a theoretical perspective.

Gomory and Johnson’s joint work in the 1970s [47, 48], together with John-
son’s independent results [58] in the same decade, shows that cut-generating
pairs can be understood by studying infinite-dimensional convex sets parame-
terized by k ∈ N and S̄ ⊆ Rk. For any index set I (not necessarily finite), RI
will denote the vector space of all real-valued functions with domain I, and
R(I) will denote the subspace of real-valued functions with domain I that have
finite support, i.e., functions that take value zero except on a finite set.1 For

example, R(Rk) is the set of all functions s : Rk → R with finite support. The
object of interest is

XS̄ :=

{
(s, y) ∈ R(Rk) × R(Rk)

∣∣∣∣ ∑
r∈Rk

rs(r) +
∑
p∈Rk

py(p) ∈ S̄,

s(r) ∈ R+ ∀r ∈ Rk,

y(p) ∈ Z+ ∀p ∈ Rk
}
.

(1.5)

The convex hull of points in XS̄ is an infinite-dimensional convex set in

R(Rk)×R(Rk) that contains the convex hull of every XS̄(R,P ) (for every choice

1 This notation for functions of finite support is used, for example, in [2].
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of R and P ) as a finite-dimensional face. Cut generating function pairs can

then be interpreted as halfspaces in the vector space R(Rk)×R(Rk) that contain
XS̄ .

1.2 Approaches to understanding cut-generating function pairs

The setting of conv(XS̄) where S̄ is a translate of Zk has received the most
attention in the literature.2 Fix a point f ∈ Rk \ Zk and let S̄ = f + Zk. Two
distinct approaches have emerged within the study of the facial structure of
conv(XS̄), which we will compare below.

1. The infinite group problem. Gomory and Johnson, in their work in [47,
48], study the infinite group problem, which appears as the face of conv(XS̄)

given by conv(XS̄) ∩
{

(s, y) ∈ R(Rk) × R(Rk) | s = 0
}

. This produces cut-
generating functions π : Rk → R that are useful for the study of pure
integer optimization problems. The structure of these functions π can be
very complicated; it is the main topic of our survey.
By Johnson’s fundamental work [58], we know that these functions π can
then be easily lifted to strong cut-generating pairs (ψ, π) for mixed-integer
optimization problems using closed form formulas.

2. Intersection cuts. Another approach to cut-generating pairs has its roots
in Balas’ work on intersection cuts [6] and Balas and Jeroslow’s work on
monoidal strengthening [11]. More recent work by Andersen, Louveaux,
Weismantel, and Wolsey [3] renewed the interest in this approach. Borozan
and Cornuéjols [23] put it in the framework of cut generating functions,
and Dey and Wolsey [40] interpreted monoidal strengthening in this setting.
This line of research was developed further in many papers, including [12–
14, 16, 28, 36].
Consider again the case S̄ = f + Zk. Then the face of conv(XS̄) given by

conv(XS̄) ∩
{

(s, y) ∈ R(Rk) × R(Rk) | y = 0
}

is studied first,3 giving cut-
generating functions ψ : Rk → R. They are obtained as the gauge functions
of maximal lattice-free convex bodies. The functions ψ are then lifted to
cut-generating pairs (ψ, π) for XS̄ .
The advantage of the intersection cut approach, compared with Gomory–
Johnson’s infinite group problem, is that the gauge functions ψ can be
evaluated using simpler formulas. Further, generalizations have been stud-
ied in which the set S̄ is allowed to be more general than just a translated
lattice – the most frequently studied S̄ is of the form C ∩ (f + Zk) where
C is a convex subset of Rk and f ∈ Rk \ Zk (for example, C = Rk+ would
correspond to model (1.2)). In this case, the cut-generating functions are
obtained from so-called maximal S̄-free convex sets.

2 This model is called the mixed-integer infinite relaxation, for example in the survey [27],
or sometimes the mixed-integer group problem, but we shall not use either of these terms in
the remainder of our survey.

3 This model is called the continuous infinite relaxation, for example in the survey [27],
or sometimes the continuous group problem.
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The drawback of the intersection cut approach is that lifting a gauge func-
tion ψ to a strong cut-generating pair (ψ, π) can be rather difficult. This
difficulty has been recently studied by [5, 12, 16, 28]. Moreover, this ap-
proach produces a much smaller subset of cut-generating pairs as compared
with the infinite group approach when S̄ is a translated lattice. In this case,
there exist undominated cut-generating pairs (ψ, π) where ψ is not the
gauge of a maximal lattice-free set – these can still be obtained in the con-
text of the infinite group problem. In contrast the approach outlined above
starts with a function ψ that is the gauge function of a maximal lattice-free
set, and so the approach cannot derive such cut-generating functions.

Remark 1.1 The study of cut-generating functions for k = 1 is referred to
as the single-row problem, and the general k ≥ 2 case is referred to as the
multi-row problem in the literature. Algorithms used in practice for solving
mixed-integer problems have so far used only insights from the single-row
problem. It is believed that the general multi-row analysis can lead to stronger
cutting planes that can significantly boost the performance of state-of-the-art
algorithms.

1.3 Outline of the survey

We will survey the recent progress made on the infinite group problem ap-
proach described in subsection 1.2. We view this as a follow-up to two ex-
cellent surveys, the first by Conforti, Cornuéjols, and Zambelli [27], which
discusses the basic structure of the corner polyhedron and its relation with
cut-generating functions, and the second by Richard and Dey [65], which fo-
cuses on the group-theoretic approach. Our survey focuses on the milestones
that have been reached since [27, 65] were written. Although we do not in-
tend [27, 65] to be prerequisites to this article, the reader who is familiar with
the material from [27, 65] will certainly have a better context for the current
article. The reader may use Table 6 in Appendix B as a reference to notation
in these surveys and other literature.

Our survey is divided into two parts, of which this article comprises the
first part. Part II will appear in a subsequent issue of the same journal. Part I
consists of sections 1, 2, 3 and 4, which introduce the central concepts and
develop the fundamental tools required for the study of the infinite group
problem. Part II is divided into 4 sections (sections 5, 6, 7 and 8) devoted to
algorithmic and structural results which build on the foundation laid in Part I.

Section 2 formally introduces the problem, the main objects of study such
as valid functions, minimal valid functions, extreme functions, and facets, and
their basic properties. We conclude the section with a discussion of families
of valid functions and some open questions (subsection 2.4). The discussion
references a compendium that summarizes known families from the literature
(Appendix A), and contains some previously unknown families such as extreme
functions with 5 or more slopes and some discontinuous extreme functions with
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left and right discontinuity at the origin. Section 3 introduces the notation
and concepts from discrete geometry required for analyzing the problem, and
collects foundational techniques for the general k-row problem. Section 4 sur-
veys higher-dimensional variants of the celebrated Interval Lemma. Section 5
[Part II] introduces one of the most general sufficient conditions for the funda-
mental notion of extremality, illustrating how all the techniques introduced in
the previous sections come together to analyze extremality. Section 6 [Part II]
investigates some analytic properties of the problem and demonstrates the use
of analytical ideas to construct extreme functions. Sections 7 and 8 [Part II]
discuss important algorithmic and structural results known for the one-row and
two-row problems. These results are based on recent breakthroughs in [17–19].

We highlight results that are new in this survey with the annotation “New
result ♣”. To the best of our knowledge, these do not appear elsewhere in the
literature.

Due to constraints of space, we must limit the topics covered in this survey.
We briefly mention some of the important highlights in the literature that are
not discussed in this survey. A wealth of results on the finite group problem are
closely related to the infinite group problem. We invite the reader to explore
the survey by Richard and Dey [65] for more details about this direction.
Furthermore, we focus on the structural results of the infinite group problem,
as opposed to the implementation of these results to solve integer programming
problems. This includes the so-called shooting experiments discussed in [50] to
empirically judge quality of the cutting planes, and the discussion of relative
strength in [49, section 6].

2 The Infinite Group Problem

As stated in subsection 1.2, Gomory and Johnson introduced the so-called
infinite group problem. It has its roots in Gomory’s group problem [45], which
was introduced by him as an algebraic relaxation of pure integer linear opti-
mization problems. We introduce this next as it will be useful for formulating
many of our results in a unified language. One considers an abelian group G,
written additively, and studies the set of functions y : G → R satisfying the
following constraints: ∑

r∈G
r y(r) ∈ f + S

y(r) ∈ Z+ for all r ∈ G
y has finite support,

(2.6)

where S is a subgroup of G and f is a given element in G \ S; so f + S is
the coset containing the element f . We are interested in studying the convex
hull Rf (G,S) of the set of all functions y : G → R satisfying the constraints
in (2.6). Rf (G,S) is a convex subset of the vector space R(G), which is infinite-
dimensional when G is an infinite group, i.e., of infinite order. The nomencla-
ture k-row infinite group problem is reserved for the situation when G = Rk
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is taken to be the group of real k-dimensional vectors under addition, and
S = Zk is the subgroup of the integer vectors. When k = 1, we refer to it
as the single-row infinite group problem. Recall that the connection with the
cut-generating function model (1.3) is made by setting S̄ = f + S, whence we

get Rf (G,S) as the projection of conv(XS̄) ∩
{

(s, y) ∈ R(Rk) × R(Rk) | s = 0
}

onto the y space.

Remark 2.1 Note that there is a correspondence between the sets Rf (G,S)
and Rf̄ (G/S, 0) where G/S is the quotient group with respect to the (normal)
subgroup S and f̄ is the element corresponding to the coset f +S, by standard
aggregation of variables.4

In the earlier literature on the infinite group problem, the aggregated for-
mulation Rf̄ (Rk/Zk, 0) was used. The quotient Rk/Zk is the k-dimensional
torus; it can be identified with the half-open unit cube [0, 1)k, using coordi-
natewise arithmetic modulo 1. In this survey, however, we follow the trend in
the recent literature [17–19, 27] to work with Rf (Rk,Zk) instead. This removes
the need for complicated notation for mapping between elements of Rk and
elements of Rk/Zk (see Table 6 for an overview), and for complicated geo-
metric notions, such as “wrap-around” line segments in Johnson’s cylindrical
space [49], in favor of the standard mathematical language of periodic, locally
finite polyhedral complexes on Rk (subsection 3.1). We pay a small price for
the simplicity and precision of this approach: We will often work with infinite
objects where finite objects would suffice. However, it is very easy to go back
to finite objects in the moments when we want to state algorithms.

The aggregated formulation is still of interest for the case where G/S is
a finite group, as then Rf̄ (G/S, 0) is finite-dimensional and thus amenable
to polyhedral techniques. This case is referred to as a finite group problem;
it will appear in subsection 8.1. Due to the correspondence between the sets
Rf (G,S) and Rf̄ (G/S, 0), we shall also refer to Rf (G,S) as a finite group
problem whenever S has finite index in G, i.e., G/S is a finite group.

2.1 Valid inequalities and valid functions

Following Gomory and Johnson, we are interested in the description ofRf (G,S)
as the intersection of halfspaces in R(G). We first describe the general form
that these halfspaces take and then a standard normalization that leads to the
idea of cut-generating functions.

4 Indeed, y ∈ Rf (G,S) gives an element ȳ ∈ Rf̄ (G/S, 0) by setting ȳ(C) =
∑

r∈C y(r)
for every coset C ∈ G/S. In the other direction, given ȳ ∈ Rf̄ (G/S, 0) we get a solution
y ∈ Rf (G,S) by simply picking a canonical representative rC for each coset C ∈ G/S
and setting y(rC) = ȳ(C). From aggregation of variables it follows that the strongest valid
inequalities for the convex hull of Rf (G,S) will have identical coefficients on any coset; see
Theorem 2.6.
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2.1.1 Valid inequalities

Any halfspace in R(G) is given by a pair (π, α), where π ∈ RG and α ∈ R, and
the halfspace is the set of all y ∈ R(G) that satisfy

∑
r∈G π(r)y(r) ≥ α. The

left-hand side of the inequality is a finite sum because y has finite support. Such
an inequality is called a valid inequality for Rf (G,S) if

∑
r∈G π(r)y(r) ≥ α for

all y ∈ Rf (G,S), i.e., Rf (G,S) is contained in the halfspace defined by (π, α).
Note that the set of all valid inequalities (π, α) is a cone in the space RG ×R.

2.1.2 Sign of the coefficients of valid inequalities

If S has finite index in G, then it can be shown that if (π, α) gives a valid
inequality, then π ≥ 0. An even stronger statement is easily seen to be true:
if r ∈ G is such that there exists n ∈ N satisfying nr ∈ S, then π(r) ≥ 0 [27,
section 5]. However, when this is not the case, there may exist valid inequalities
(π, α) where π takes negative values. We give an explicit example below for
the one-row infinite group problem (G = R and S = Z).

It is well-known that there exist functions h : R → R such that they sat-
isfy h(a + b) = h(a) + h(b) for all a, b ∈ R and whose graph is dense in R2.
These are the non-regular solutions to the so-called Cauchy functional equa-
tion [1, chapter 2, Theorem 3]. This functional equation is discussed further
in section 4.

Proposition 2.2 (New result ♣) Let f be any rational number. Let h : R→
R be any function such that h(a + b) = h(a) + h(b) for all a, b ∈ R and the
graph of h is dense in R2. Define π∗ : R → R as π∗(a) = h(a)− h(1)a for all
a ∈ R. Then (π∗, 0) defines an implicit equality of Rf (G,S), i.e., the equation∑

r∈G
π∗(r)y(r) = 0 holds for y ∈ Rf (G,S).

Thus both (π∗, 0) and (−π∗, 0) define valid inequalities for Rf (G,S). Moreover
π∗ has a dense graph in R2.

Proof Using additivity, h(a) = h(1)a for all rational a and therefore we have
π∗(f + w) = 0 for any w ∈ Z. Moreover, since h(a + b) = h(a) + h(b) for all
a, b ∈ R, we also have π∗(a+ b) = π∗(a) + π∗(b) for all a, b ∈ R. Consider any
y ∈ R(R) such that

∑
r∈R r y(r) = f + w for some w ∈ Z, and y(r) ∈ Z+ for

all r ∈ R. Then 0 = π∗(f + w) = π∗(
∑
r∈R r y(r)) =

∑
r∈R π

∗(r) y(r). This
establishes that (π∗, 0) defines an implicit equality for Rf (G,S). The graph of
π∗ is dense in R2 because the graph of h is dense in R2. ut

In fact, for the infinite group problem Rf (Rk,Zk) with rational f we show
that the set of implicit equalities (equivalently, the lineality space of the cone
of valid inequalities) consists of the (π, α) such that π is additive and α = 0.
The discussion above says that for any valid inequality given by the pair (π, α)
we have π(r) ≥ 0 for every r ∈ Qk.
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Proposition 2.3 (New result ♣) Let f be a rational vector. A pair (π, α) ∈
RRk × R satisfies

∑
r∈Rk π(r)y(r) = α for all y ∈ Rf (Rk,Zk) if and only if π

is additive, i.e., π(r1) + π(r2) = π(r1 + r2) for all r1, r2 ∈ Rk, and α = 0.

Proof The “if” direction can be proved using the same calculations as in the
proof of Proposition 2.2. We prove the “only if” direction.

For r ∈ Rk, let er denote the finite support function which takes value
1 at r and 0 everywhere else. Then y1 = er1+r2 + ef−r1−r2 ∈ Rf (Rk,Zk).
Therefore, α =

∑
r∈Rk π(r)y1(r) = π(r1 + r2) + π(f − r1 − r2). Similarly,

er1+er2+ef−r1−r2 ∈ Rf (Rk,Zk) and therefore α = π(r1)+π(r2)+π(f−r1−r2).
Therefore, π(r1) + π(r2) = π(r1 + r2).

Additive functions take value 0 at the origin: π(0) + π(0) = π(0) which
implies π(0) = 0. Since, π(r) ≥ 0 for every r ∈ Qk and for any rational r,
π(r) + π(−r) = π(0) = 0 we must have π(r) = 0 for every rational r. Thus,
using the fact that ef ∈ Rf (Rk,Zk), we have α =

∑
r∈Rk π(r)ef (r) = π(f) = 0

since f is rational. ut

We next show that the intersection of all halfspaces of the form
∑

r∈G π(r)y(r) ≥
α with π ≥ 0 is a much larger superset of Rf (G,S). Our example is for
Rf (R,Z).

Proposition 2.4 (New result ♣) Let f be any rational number. Let h : R→
R be any function such that h(a + b) = h(a) + h(b) for all a, b ∈ R and the
graph of h is dense in R2. Define π∗ : R → R as π∗(a) = h(a)− h(1)a for all
a ∈ R. Let r1, . . . , rk be a finite set of real numbers such that π∗(ri) < 0 for
all i = 1, . . . , k. Define y∗ ∈ R(R) as y∗(r) = 1 if r ∈ {r1, . . . , rk} ∪ {f}, and
y∗(r) = 0 otherwise. Then

1. y∗ violates the implicit equality
∑
r∈G π

∗(r) y(r) = 0 and thus, does not lie
in Rf (R,Z),

2. y∗ satisfies all valid inequalities
∑
r∈R π(r)y(r) ≥ α where π ≥ 0.

Proof Observe that
∑
r∈G π

∗(r) y∗(r) =
∑k
i=1 π

∗(ri)+π∗(f) =
∑k
i=1 π

∗(ri) <
0. By Proposition 2.2, (π∗, 0) is an implicit equality for Rf (R,Z) and therefore,
y∗ 6∈ Rf (R,Z).

On the other hand, for any valid inequality given by (π, α) such that π ≥ 0,
we have π(f) ≥ α (since ef ∈ Rf (R,Z)). So, for any such valid function π, we

have
∑
r∈R π(r)y∗(r) =

∑k
i=1 π(ri) + π(f) ≥ π(f) ≥ α (since π ≥ 0). ut

The above example takes points that do not satisfy the implicit equalities,
i.e., we consider points outside the affine hull of the feasible region. If we
restrict ourselves to satisfy the implicit equalities, are the nonnegative valid
inequalities sufficient? This is an open question.

Open question 2.5 Is every valid inequality (π, α) the sum of a nonnegative
valid inequality (π+, α) and an implicit equality (π=, 0)?
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2.1.3 Valid functions

Since data in finite-dimensional integer programs is usually rational, and this
is our main motivation for studying the infinite group problem, it is customary
to concentrate on valid inequalities with π ≥ 0; then we can choose, after a
scaling, α = 1 (otherwise, the inequality is implied by the nonnegativity of
y). Thus, we only focus on valid inequalities of the form

∑
r∈G π(r)y(r) ≥ 1

with π ≥ 0. Such functions π ∈ RG are called valid functions for Rf (G,S).
We remind the reader that this choice comes at a price because of Proposi-
tion 2.4; however, it can be shown that for rational corner polyhedra, which
form an important family of relaxations for integer programs, all valid in-
equalities are restrictions of nonnegative valid functions for the infinite group
problem. See [27] for a discussion.

2.2 Minimal functions, extreme functions and facets

Gomory and Johnson [47, 48] defined a hierarchy on the set of valid func-
tions, capturing the strength of the corresponding valid inequalities, which we
summarize now.

2.2.1 Minimal functions

A valid function π for Rf (G,S) is said to be minimal for Rf (G,S) if there is
no valid function π′ 6= π such that π′(r) ≤ π(r) for all r ∈ G. For every valid
function π for Rf (G,S), there exists a minimal valid function π′ such that π′ ≤
π [21, Theorem 1.1], and thus non-minimal valid functions are redundant in the
description of Rf (G,S). Note that π′ is not uniquely determined (Figure 1).

Minimal functions for Rf (G,S) were characterized by Gomory for the case
where S has finite index in G in [45], and later for Rf (R,Z) by Gomory and
Johnson [47]. We state these results in a unified notation in the following
theorem.

A function π : G → R is subadditive if π(x + y) ≤ π(x) + π(y) for all
x,y ∈ G. We say that π is symmetric (or satisfies the symmetry condition) if
π(x) + π(f − x) = 1 for all x ∈ G.

Theorem 2.6 (Gomory and Johnson [47]) Let G be an abelian group, S
be a subgroup of G and f ∈ G \ S. Let π : G → R be a nonnegative function.
Then π is a minimal valid function for Rf (G,S) if and only if π(z) = 0 for
all z ∈ S, π is subadditive, and π satisfies the symmetry condition. (The first
two conditions imply that π is periodic modulo S, that is, π(x) = π(x + z)
for all z ∈ S, and the symmetry condition implies that the values of minimal
functions are bounded between 0 and 1.)

See [27, Theorem 5.4] for a proof.
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gomory_fractional california_ipnot minimal

gmic

ll_strong_fractional

minimal

Fig. 1 The hierarchy of valid, minimal, and extreme functions by example for the case
Rf (R,Z). Pairwise convex combinations (solid lines forming the bottom triangle) of three
extreme functions (graphs on red background at the corners) give non-extreme, minimal
functions (graphs on yellow background on the edges). These functions dominate (wavy
lines) various non-minimal, valid functions (graphs on green background, top). Even without
checking the dominance, it is easy to see that the functions shown on the top cannot be
minimal: they have some function values larger than 1 (international orange), but minimal
valid functions are upper bounded by 1 by Theorem 2.6. Since minimal valid functions for
Rf (R,Z) are periodic with respect to Z, we only show the interval [0, 1].

2.2.2 Extreme functions

In polyhedral combinatorics, one is interested in classifying the facet-defining
inequalities of a polytope, which are the strongest inequalities and provide
a finite minimal description. In the infinite group problem literature, three
notions analogous to that of a facet-defining inequality have been proposed,
which are not known to be equivalent. We start with the notion of an extreme
function.

A valid function π is extreme forRf (G,S) if it cannot be written as a convex
combination of two other valid functions for Rf (G,S), i.e., π = 1

2 (π1 + π2)
implies π = π1 = π2 (see Figure 1 and Figure 3). Extreme functions are
easily seen to be minimal. In fact we may view this definition from a convex
geometry perspective. By Theorem 2.6, the set of minimal valid functions is
a convex subset of the infinite-dimensional space RG of real-valued functions

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gomory_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+california_ip(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ll_strong_fractional(%22
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Valid Functions

Minimal Functions

Extreme

Functions

Weak

Facets
Facets

(a)

Valid Functions

Minimal Functions

Extreme Functions

Weak Facets

Facets

(b)

Fig. 2 The hierarchy of valid, minimal, and extreme functions and facets and weak facets.
(a) General case. (b) Situation in the finite-dimensional case and in the case of continuous
piecewise linear functions with rational breakpoints.

f 1

1

f 1

1

f 1

1

Fig. 3 This function (h = not_extreme_1()) is minimal, but not extreme (and hence also
not a facet), as proved by extremality_test(h, show_plots=True). The procedure first
shows that for any distinct minimal π1 = π+ π̄ (blue), π2 = π− π̄ (red) such that π = 1

2
π1 +

1
2
π2, the functions π1 and π2 are continuous piecewise linear with the same breakpoints as

π (in the terminology of [18], π is affine imposing on all intervals between breakpoints).
A finite-dimensional extremality test then finds two linearly independent perturbations π̄
(magenta), as shown.

on G; this follows from the observation that all the properties in Theorem 2.6
are preserved under taking convex combinations of functions.

Proposition 2.7 (New result ♣) The set of minimal valid functions is a
compact convex set under the product topology on the space RG of real-valued
functions on G.

The proof appears in subsection 6.1. In the light of Proposition 2.7, it is
natural to study the extreme points of this compact convex set of minimal valid
functions. These are precisely the extreme functions. By an application of the
Krein–Milman theorem, all minimal valid functions are either convex combi-
nations of extreme functions or pointwise limits of such convex combinations
(i.e., limits in the product topology).

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+not_extreme_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+extremality_test(%22
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2.2.3 Facets and weak facets

A related notion is that of a facet. Let P (π) denote the set of all feasible
solutions y ∈ R(G) satisfying (2.6) such that

∑
r∈G π(r)y(r) = 1. A valid

function π is called a facet if for every valid function π′ such that P (π) ⊆ P (π′)
we have that π′ = π, as defined in [49]. Equivalently, a valid function π is a
facet if this condition holds for all such minimal valid functions π′ (cf. [21]).

A similar facet definition, which we call a weak facet, is given in [37] and
in fact was used in an erroneous proof of the so-called Facet Theorem in [49,
Theorem 3] (see Theorem 2.12)5. In particular, a valid function π is called a
weak facet if for every valid function π′ such that P (π) ⊆ P (π′) we have that
P (π) = P (π′).

2.2.4 Relation between the three notions

Facets are extreme functions (cf. [21, Lemma 1.3]), but it is unknown if all
extreme functions are facets. A facet is also a weak facet, but it is unknown if
all weak facets are facets. Thus, facets are a subset of the intersection of ex-
treme functions and weak facets, but nothing further is known in general; see
Figure 2 (a). When G is a finite abelian group, the set of minimal functions
is a finite-dimensional polyhedron (given by constraints coming from Theo-
rem 2.6); see subsection 8.1. In this setting, it is well known that the three
notions of weak facets, facets and extreme inequalities are equivalent, and form
the extreme points of this polyhedron; see Figure 2 (b). In the one-row infinite
group problem, we can also establish some equivalence as stated below, which
is a consequence of Theorem 8.6. The result is new and has not been published
before.

Proposition 2.8 (New result ♣) Suppose π : R→ R is a continuous piece-
wise linear function6 with rational breakpoints in 1

qZ for some q ∈ N. Then π
is extreme if and only if π is a facet.

Open question 2.9 Are the definitions of facets, weak facets, and extreme
functions equivalent?

2.3 A roadmap for proving extremality and facetness

An understanding of the set of points for which the subadditivity relations of
a minimal function hold at equality is crucial to the study of both extreme
functions and facets. This motivates the following definition.

5 In a proof by contradiction, they say that if π is not a facet, then there exists a valid
function π∗ and a y∗ ∈ Rf (G,S) such that y∗ ∈ P (π∗) \ P (π). This works when π is not a
weak facet, but does not work if we assume that π is not a facet.

6 See subsection 3.1 for the definition that we use.



Light on the Infinite Group Relaxation I 15

Definition 2.10 Define the subadditivity slack of π as

∆π(x,y) := π(x) + π(y)− π(x + y) (2.7)

and the additivity domain of π as

E(π) := { (x,y) | ∆π(x,y) = 0 } . (2.8)

Additivity domains are used by Gomory and Johnson to define the notion
of merit index in [49]. The merit index is the volume of E(π) (modulo Zn) and
can be taken as a quantitative measure of strength of minimal valid functions.
Work on the merit index also appears in [39]. We will not discuss the merit
index in this survey; however, the set E(π) will be crucial in what follows.

The main technique used to show a function π is extreme is to assume
that π = 1

2 (π1 + π2) where π1, π2 are valid functions, and then show that
π = π1 = π2. One then employs the following lemma to infer important
properties of π1, π2. These following facts can be found in the literature for
the one-row problem; the extension to general k is straightforward.

Lemma 2.11 Let π : Rk → R+ be minimal, π = 1
2 (π1 + π2), and π1, π2 valid

functions. Then the following hold:

(i) π1, π2 are minimal [47, Lemma 1.4].
(ii) All subadditivity relations π(x+y) ≤ π(x)+π(y) that are tight for π are

also tight for π1, π2, i.e., E(π) ⊆ E(π1) ∩ E(π2) [47, proof of Theorem
3.3].7

(iii) Suppose there exists a real number M such that lim suph→0

∣∣∣π(hr)
h

∣∣∣ ≤
M for all r ∈ Rk such that ‖r‖ = 1. Then π is Lipschitz continuous.
Furthermore, this condition holds for π1 and π2 and π1, π2 are Lipschitz
continuous [18, Theorem 2.9].

(iv) If π is continuous piecewise linear8, then π, π1, π2 are all Lipschitz con-
tinuous [19, Lemma 1.4].

(v) Suppose k = 1, i.e., π : R→ R+ and π is piecewise linear9 and continuous
from the right at 0 or continuous from the left at 0.10 Then π1 and π2

are continuous at all points at which π is continuous [39, Theorem 2].

To prove that a valid inequality is a facet, the main tool is the so-called
Facet Theorem, originally proved by Gomory and Johnson [49] for the one-row

7 When π is a discontinuous piecewise linear function, subadditivity gives certain relations
on the limit values of the function. We omit this more subtle discussion in this survey; see [18]
for more details.

8 See subsection 3.1 for the definition that we use.
9 See subsection 3.1 for the definition that we use, which includes certain discontinuous

functions.
10 This condition is also not always true for piecewise linear functions. See Table 4 for exam-

ples of extreme functions that are discontinuous on both sides of the origin. The condition of
one-sided continuity at the origin cannot be removed from the hypothesis of Lemma 2.11 (v)
(New result ♣). This is illustrated by example zhou_two_sided_discontinuous_cannot_

assume_any_continuity, constructed by Zhou (2014, unpublished).

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
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case; it extends verbatim to the k-row case.11 We present a stronger version
of the theorem, which first appeared in [21].12

Theorem 2.12 (Facet Theorem [49], [21, Theorem 3.1]) Let π be a
minimal valid function. Suppose for every minimal valid function π′, E(π) ⊆
E(π′) implies π′ = π. Then π is a facet.

In the light of Lemma 2.11 and Theorem 2.12, if one can establish that for
a minimal valid function π, E(π) ⊆ E(π′) implies π′ = π for every minimal
valid function π′, then π is extreme, as well as a facet. Indeed, if π = 1

2 (π1+π2)
where π1, π2 are valid functions, by Lemma 2.11 (i), π1 and π2 are minimal
and by Lemma 2.11 (ii), E(π) ⊆ E(π1) ∩ E(π2), and so π = π1 = π2. The
facetness follows directly from Theorem 2.12, and gives an alternate proof of
extremality since all facets are extreme.

The condition that E(π) ⊆ E(π′) implies π′ = π for every minimal valid
function π′ is established along the following lines. First, structural properties
of π can be used to obtain a structured description of E(π). For example, the
fact that π is piecewise linear often shows that E(π) is the union of many
full-dimensional convex sets. E(π′) shares this structure with E(π) because of
the assumption that E(π) ⊆ E(π′). Then, results such as the Interval Lemma,
discussed in section 4, are used to show that π′ must be affine on the set of
points contributing to E(π′). Finally, the conditions that all minimal valid
functions are 0 at the origin and 1 at f + Zk puts further restrictions on the
values that π′ can take, and ultimately force π′ = π.13

2.4 Classification and taxonomy of facets and extreme functions

The main goal in the study of the infinite group problem is to obtain a classi-
fication of facets and extreme valid functions. We do not believe that a simple
classification exists like Theorem 2.6 for minimal valid functions. In spite of
this, several beautiful theorems have been obtained regarding the structure of
facets and extreme valid functions, and there is a lot more to be discovered.
This survey attempts to highlight the most important known results in this
research area and outline some of the challenging open problems.

Inspired by the survey by Richard and Dey [65, p. 786], we provide an up-
dated compendium, or “taxonomy,” of known extreme functions at the end of
this survey (Appendix A). The focus lies on the case of the one-row (k = 1) infi-
nite group problem, Rf (R,Z), for which many types of extreme functions have
been discovered and analyzed (Table 1, 2, 3, 4). Also a number of “procedures”

11 Gomory and Johnson’s original proof actually holds only for weak facets, and not for
facets as claimed in [49].
12 In contrast to Gomory–Johnson’s Facet Theorem, the condition that E(π) ⊆ E(π′)

implies π′ = π only needs to be tested on minimal valid functions, not all valid functions.
13 Sometimes certain continuity arguments need to be made, where results like Lemma 2.11

(iii), (iv) and (v) are helpful. In such situations, the proof of extremality is usually slightly
simpler than a proof for facetness, owing to Lemma 2.11 (iii); see Theorem 5.5 and Theo-
rem 6.4.
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(operations) have been studied in the literature that preserve extremality un-
der some conditions; we present these in Table 5.

We do not provide explicit constructions or descriptions of these functions
here. Instead, we invite the interested reader to investigate the functions in
an interactive companion program [56], including the electronic compendium
of extreme functions [70]. The program and the electronic compendium are
implemented in the free (open-source) computer algebra package Sage [67].14

Most facets and extreme functions described in the literature are piece-
wise linear functions.15 The number of slopes (i.e., the different values of the
derivative) of a function is a statistic that has received much attention in the
literature. In fact, one of the classic results in the study of extreme functions
for the single-row problem is the following:16

Theorem 2.13 (Gomory–Johnson 2-Slope Theorem [47]) If a contin-
uous piecewise linear minimal function of Rf (R,Z) has only 2 values for the
derivative wherever it exists (2 slopes), then the function is extreme.

Among the types of extreme functions that are piecewise linear functions,
there are discontinuous and continuous ones. In the single-row case (k = 1),
continuous piecewise linear extreme functions with 2, 3 and 4 different slopes
were previously known, and discontinuous piecewise linear extreme functions
with 1 and 2 slopes were previously known. Moreover, all previously known
examples of extreme discontinuous functions were continuous on one side of
the origin. Hildebrand (2013, unpublished) found continuous piecewise linear
extreme functions with 5 slopes using computer-based search, as well as various
discontinuous piecewise linear extreme functions. Köppe and Zhou [61] later
found continuous piecewise linear extreme functions with up to 28 slopes.

Proposition 2.14 (New result ♣) There exist continuous piecewise linear
extreme functions with 5, 6, 7, and 28 slopes. There exist discontinuous piece-
wise linear extreme functions with 3 slopes and discontinuous piecewise linear
extreme functions that are discontinuous on both sides at the origin. See Ta-
ble 4.

This prompts the following question.

Open question 2.15 For the single-row problem Rf (R,Z), do there exist
continuous and discontinuous extreme functions with s slopes for every s ≥ 2?

The additivity domain E(π) for any minimal function π (see (2.8)) can be
decomposed as the union of its maximal convex subsets. The first 5-slope func-

14 The program [56] can be run on a local installation of Sage, or online via SageMathCloud.
The help system provides a discussion of parameters of the extreme functions, bibliographic
information, etc. It is accessed by typing the function name as shown in the table, followed
by a question mark. Example: gmic?
15 See subsection 3.1 for the definition that we use, which includes certain discontinuous

functions.
16 See Theorem 5.1 for a general k-row result.
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tions found by Hildebrand (2013) have an additivity domain which contains
lower-dimensional maximal convex components.17 This begs the question:

Open question 2.16 For the single-row problem Rf (R,Z), do there exist
continuous piecewise linear extreme functions of Rf (R,Z) with s slopes such
that E(π) is the union of full-dimensional convex sets for every s ≥ 2?

Not all facets and extreme functions are piecewise linear though. Basu, Con-
forti, Cornuéjols, and Zambelli [15] constructed a family of facets that are
not piecewise linear, yet the derivatives (where they exist) only take 2 val-
ues; see subsection 6.4. A function π̃ from this family is absolutely continuous
and therefore it is differentiable almost everywhere (a.e.). The derivative π̃′

happens to take only two different values a.e., so π̃ is a “generalized 2-slope
function.” This suggests the following refined version of Gomory and Johnson’s
original piecewise linear conjecture for extreme functions.

Conjecture 2.17 For every absolutely continuous extreme function π : R→ R,
the derivative π′ is a simple function. Thus, there exists a finite partition of R
into measureable subsets M0, . . . ,Mt such that M0 is of measure zero and π′

is constant over each of M1, . . . ,Mt.

The fact that the derivative of the counterexample from [15] happens to
take only two different values a.e. also gives rise to the following generalized
2-slope conjecture. This conjecture would generalize Theorem 2.13.

Conjecture 2.18 Let π : R→ R be a minimal function that is absolutely contin-
uous and whose derivative π′ only takes two values outside of a set of measure
zero. Then π is extreme.

The key difficulty in answering the above questions is that the tools of
functional equations (such as the Interval Lemma as discussed in section 4) no
longer directly apply and new tools will most likely need to be employed for
the resolution. Thus, there are still substantial questions left to be explored,
even for the single-row (k = 1) problem.

Much less is known about the k-row problem Rf (Rk,Zk) for general k. Dey
and Richard [38] pioneered the construction of extreme functions for the k-
row problem. Their sequential-merge procedure constructs extreme functions
and facets for k ≥ 2 dimensions by combining extreme functions and facets
for smaller k; see subsection 5.2. As mentioned earlier, a breakthrough was
made when Theorem 5.1 was proved in [21, Theorem 1.7], generalizing Gomory
and Johnson’s single-row result (Theorem 2.13) to the general k-row problem,
giving a very general sufficient condition for extremality and facetness.

17 The functions are available in the electronic compendium [70] as hildebrand_5_slope...
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3 The k-dimensional theory of piecewise linear minimal valid
functions

3.1 Polyhedral complexes and piecewise linear functions

We introduce the notion of polyhedral complexes, which serves two purposes.
First, it provides a framework to define piecewise linear functions, generalizing
the familiar situation of functions of a single real variable. Second it is a tool
for studying subadditivity and additivity relations of these functions. This
exposition follows [19].

Definition 3.1 A (locally finite) polyhedral complex is a collection P of poly-
hedra in Rk such that:

(i) ∅ ∈ P,
(ii) if I ∈ P, then all faces of I are in P,
(iii) the intersection I ∩ J of two polyhedra I, J ∈ P is a face of both I and

J ,
(iv) any compact subset of Rk intersects only finitely many faces in P.

A polyhedron I from P is called a face of the complex. A polyhedral complex P
is said to be pure if all its maximal faces (with respect to set inclusion) have
the same dimension. In this case, we call the maximal faces of P the cells of P.
The zero-dimensional faces of P are called vertices and the set of vertices of
P will be denoted by vert(P). A polyhedral complex P is said to be complete
if the union of all faces of the complex is Rk. A pure and complete polyhedral
complex P is called a triangulation of Rk if every maximal cell is a simplex.

Example 3.2 (Breakpoint intervals in R1 [18]) Let 0 = x0 < x1 < · · · <
xn−1 < xn = 1 be a list of “breakpoints” in [0, 1]. We extend it periodically
as B = {x0 + t, x1 + t, . . . , xn−1 + t | t ∈ Z }. Define the set of 0-dimensional
faces to be the collection of singletons, PB, =

{
{x} | x ∈ B

}
, and the

set of one-dimensional faces to be the collection of closed intervals, PB, ={
[xi + t, xi+1 + t] | i = 0, . . . , n− 1 and t ∈ Z

}
. Then PB = {∅}∪PB, ∪PB,

is a locally finite polyhedral complex.

Example 3.3 (Standard triangulations of R2 [19]) Let q be a positive integer.
Consider the arrangement Hq of all hyperplanes (lines) of R2 of the form( 0

1

)
· x = b,

( 1
0

)
· x = b, and

( 1
1

)
· x = b, where b ∈ 1

qZ. The complement of

the arrangement Hq consists of two-dimensional cells, whose closures are the
triangles

0 = 1
q conv({

( 0
0

)
,
( 1

0

)
,
( 0

1

)
}) and 0 = 1

q conv({
( 1

0

)
,
( 0

1

)
,
( 1

1

)
})

and their translates by elements of the lattice 1
qZ

2. We denote by Pq the col-
lection of these triangles and the vertices and edges that arise as intersections
of the triangles, and the empty set. Thus Pq is a locally finite polyhedral com-
plex. Since all nonempty faces of Pq are simplices, it is a triangulation of the
space R2.
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We give a precise definition of affine linear functions over a domain, suitable
for the general k-dimensional case.

Definition 3.4 Let U ⊆ Rk. We say π : U → R is affine (or affine linear)
over U if there exists a gradient c ∈ Rk such that for any u1,u2 ∈ U we have

π(u2)− π(u1) = c · (u2 − u1).

Given a pure and complete polyhedral complex P, we call a function
π : Rk → R piecewise linear over P if it is affine linear over the relative interior
of each face of the complex. Under this definition, piecewise linear functions
can be discontinuous. We say the function π is continuous piecewise linear over
P if it is affine over each of the cells of P (thus automatically imposing conti-
nuity). Most of the results presented in this survey will be about continuous
piecewise linear functions.

Motivated by Gomory–Johnson’s characterization of minimal valid func-
tions (Theorem 2.6), we are interested in functions π : Rk → R that are
periodic modulo Zk, i.e., for all x ∈ Rk and all vectors t ∈ Zk, we have
π(x + t) = π(x). If π is periodic modulo Zk and continuous piecewise linear
over a pure and complete complex P, then we can assume without loss of
generality that P is also periodic modulo Zk, i.e., for all I ∈ P and all vectors
t ∈ Zk, the translated polyhedron I + t also is a face of P. This is the case in
Examples 3.2 and 3.3.

Remark 3.5 If all the cells of the polyhedral complex are bounded, the value
of a continuous piecewise linear function at any point x can be obtained by
interpolating the values of the function at the vertices of the minimal face
containing x. This is utilized in subsection 8.2. The assumption of boundedness
of the cells can be made without loss of generality; see subsection 3.3. Moreover,
for a periodic continuous piecewise linear function over a periodic complex,
we can give a finite description for π by further restricting to the values in
vert(P)∩D where D = [0, 1]k or any set such that D+Zk = Rk. The finiteness
of the set vert(P) ∩ D is guaranteed by the assumption of local finiteness in
Definition 3.1 (iv).

3.2 The extended complex ∆P

For any I, J,K ⊆ Rk, we define the set

F (I, J,K) =
{

(x,y) ∈ Rk × Rk | x ∈ I, y ∈ J, x + y ∈ K
}
. (3.9)

When I, J,K are polyhedra, F (I, J,K) is also a polyhedron. Let P be a pure,
complete polyhedral complex of Rk and let π be a continuous piecewise linear
function over P. In order to study the additivity domain E(π), we define the
family of polyhedra in Rk × Rk,

∆P = {F (I, J,K) | I, J,K ∈ P } ,
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Fig. 4 Two diagrams of a function (blue graphs on the top and the left) and its polyhedral
complex ∆P (gray solid lines), as plotted by the command plot_2d_diagram(h). Left, h =

gj_forward_3_slope() (left). Right, h = not_minimal_2(). The set E(π) in both cases is
the union of the faces shaded in green. The heavy diagonal green line x+y = f corresponds
to the symmetry condition. Vertices of ∆P do not necessarily project (dotted gray lines)
to breakpoints; compare with Figure 7. Vertices of the complex on which ∆π < 0, i.e.,
subadditivity is violated, are shown as red dots; see Theorem 3.11. At the borders of each
diagram, the projections pi(F ) of two-dimensional additive faces are shown as gray shadows:
p1(F ) at the top border, p2(F ) at the left border, p3(F ) at the bottom and the right borders.

which is also polyhedral complex [19, Lemma 3.6]; see Figure 4.
Define the projections p1, p2, p3 : Rk × Rk → Rk as

p1(x,y) = x, p2(x,y) = y, p3(x,y) = x + y; (3.10)

see Figure 5. Now let I, J,K ⊆ Rk and let F = F (I, J,K). Simple formulas
for the projections of F are available [19, Proposition 3.3]:

I ′ := p1(F (I, J,K)) = (K + (−J)) ∩ I ⊆ I, (3.11a)

J ′ := p2(F (I, J,K)) = (K + (−I)) ∩ J ⊆ J, (3.11b)

K ′ := p3(F (I, J,K)) = (I + J) ∩K ⊆ K. (3.11c)

The inclusions I ′ ⊆ I, J ′ ⊆ J , K ′ ⊆ K may be strict. This possibility is
illustrated by the largest shaded triangle in Figure 4 (left). We see that the
projections I ′, J ′, K ′ give us a canonical, minimal way of representing F as
F (I ′, J ′,K ′) [19, Lemma 3.5]. Note that I ′, J ′, K ′ are not faces of P in general,
even if I, J , K were faces; see again Figure 4 (left).

We will study the function ∆π : Rk × Rk → R, as defined in (2.7), which
measures the slack in the subadditivity constraints. When π is continuous
piecewise linear over P, we have that ∆π is continuous piecewise linear over
∆P (Lemma 3.7 in [19]).

Remark 3.6 If π and P are periodic modulo Zk, then ∆π and ∆P are periodic
modulo Zk × Zk. Echoing Remark 3.5, one can make the description of ∆π
finite by recording the values of ∆π on a smaller set; for example, the set

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+plot_2d_diagram(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+not_minimal_2(%22
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I ′

F (I, J,K) = F (I ′, J ′, K ′)

x + y

y

K ′

J ′

x

Fig. 5 A face F = F (I, J,K) and its projections I′ = p1(F ), J ′ = p2(F ), K′ = p3(F ).
This is an abstract picture; note that if I′, J ′,K′ ⊆ R2 are full-dimensional, then F (I, J,K)
is actually a full-dimensional set of R4.

f

Fig. 6 A piecewise linear function π : R2 → R defined by interpolation between values of
0 in on the black solid lines and 1 on the dashed red lines. The blue dots depict the lattice
Z2. In particular, π(x, 0) = min(4x, 2− 4x) for x ∈ [0, 1

2
]. This is extended to the x-axis by

π(x, 0) = π(x mod 1
2
, 0). The points (x, 0) for x ∈ 1

2
Z are shown as red circles. Finally, we

can write π(x, y) = π( 1
2

(2x− 3y), 0) for all (x, y) ∈ R2. This function is not genuinely two-

dimensional, which is demonstrated by a function φ : R → R and a linear map T : R2 → R
such that π = φ ◦ T . Many choices for this pair φ, T are possible. For φ(t) = π( 1

2
t, 0) and

T (x, y) = 2x− 3y, we have TZ2 = Z, which satisfies the conditions in Proposition 3.8.

vert(∆P) ∩ ([0, 1]k × [0, 1]k). One may also replace [0, 1]k × [0, 1]k by D ×D
for any D satisfying D + Zk = Rk.
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3.3 Genuinely k-dimensional functions

In this subsection we show that when analyzing minimal functions it suffices
to consider “full-dimensional” minimal functions. We formalize this in the
following definition and proposition.

Definition 3.7 A function π : Rk → R is genuinely k-dimensional if there
does not exist a function φ : Rk−1 → R and a linear map T : Rk → Rk−1 such
that π = φ ◦ T .

An example of a function that is not genuinely k-dimensional is described
in Figure 6.

Proposition 3.8 (Dimension reduction; [19, Proposition B.9]) Let P
be a pure and complete polyhedral complex in Rk that is periodic modulo Zk.
Let π : Rk → R be a continuous piecewise linear function over P, such that
π is nonnegative, subadditive, periodic modulo Zk and π(0) = 0. If π is not
genuinely k-dimensional, then there exists a natural number 0 ≤ ` < k, a
pure and complete polyhedral complex X in R` that is periodic modulo Z`, a
nonnegative and subadditive function φ : R` → R that is continuous piecewise
linear over X , and a point f ′ ∈ R` \ Z` with the following properties:

1. π is minimal for Rf (Rk,Zk) if and only if φ is minimal for Rf ′(R`,Z`).
2. π is extreme for Rf (Rk,Zk) if and only if φ is extreme for Rf ′(R`,Z`).

The above idea first appears in [37, Construction 6.3], where the authors
give a construction to obtain two-dimensional minimal functions from one-
dimensional minimal functions, and show that all minimal functions for k = 2
with 2 slopes can be obtained using such a construction [37, Theorem 6.4].
The construction is exactly via the use of a linear map as described in Defini-
tion 3.7. In fact, their result is a special case of Proposition 3.8 and the simple
observation that subadditive, genuinely k-dimensional functions have at least
k + 1 slopes or gradient values (see also the conclusion of Theorem 5.1).

Remark 3.9 (Dimension reduction; [19, Remark B.10]) Using Proposition 3.8,
the extremality/minimality question for π that is not genuinely k-dimensional
can be reduced to the same question for a lower-dimensional genuinely `-
dimensional function with ` < k. When P is a rational polyhedral complex,
this reduction can be done algorithmically.

Next, we show that genuinely k-dimensional functions that are continuous
piecewise linear enjoy several regularity properties which can often simplify the
investigation of minimal valid functions that are continuous piecewise linear
functions.

Theorem 3.10 ([19, Theorem B.11]) Let P be a pure and complete poly-
hedral complex in Rk that is periodic modulo Zk. Let θ : Rk → R be a minimal
valid function for Rf (Rk,Zk) that is continuous piecewise linear over P, and
is genuinely k-dimensional. Then,

(i) f ∈ vert(P).
(ii) The cells of P and ∆P are full-dimensional polytopes.
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3.4 Finite test for minimality

One of the main advantages of working with minimal valid functions that are
piecewise linear is their combinatorial structure, which avoids many analytical
complexities. Moreover, it is possible to give a finite description of π. For
example, it suffices to know the values of π on the unit hypercube D = [0, 1]k,
which can in turn be broken into a finite number of polytopes over which π is
simply an affine function. Of course, any choice of D such that D + Zk = Rk
suffices to obtain such a finite description, and D = [0, 1]k is just one such
choice. In certain situations, other choices of D may be more natural, and
provide a shorter description.

By Theorem 2.6, we can test whether a periodic function is minimal by
testing subadditivity, the symmetry condition, and the value at the origin.
These properties are easy to test when the function is continuous piecewise
linear. The first of such tests came from Gomory and Johnson [49, Theorem
7] for the case k = 1.18 Richard, Li, and Miller [66, Theorem 22] extended
it to the case of discontinuous piecewise linear functions.19 A test for subad-
ditivity of continuous piecewise linear functions for the two-row problem was
given in [37, Proposition 10] that reduces to testing subadditivity at vertices,
edges, and the so-called supplemental vertices. We present a minimality test
for continuous piecewise linear functions for general k. To simplify notation,
we restrict ourselves to the continuous case.20 The test is stated in terms of the
set of vertices vert(∆P) of the complex ∆P; see again Figure 4 for an illustra-
tion. This uses the observation made in Remark 3.5 that the function values
for a continuous piecewise linear function can be obtained by interpolating the
values at vert(P).21

Theorem 3.11 (Minimality test [19, Theorem 3.10, Remark 3.11])
Let P be a pure, complete, polyhedral complex in Rk that is periodic modulo
Zk and every cell of P is bounded.22 Let ∆D = [0, 1]k×[0, 1]k.23 Let π : Rk → R
18 Note that in [49], the word “minimal” needs to be replaced by “satisfies the symmetry

condition” throughout the statement of their theorem and its proof.
19 They present it in a setting of pseudo-periodic superadditive functions, rather than

periodic subadditive functions.
20 A discontinuous version of Theorem 3.11 appears in [18, Theorem 2.5], where it is stated

for the case k = 1; it extends verbatim to general k. All relevant limits of the function at
discontinuities are taken care of by testing

∆πF (u, v) = lim
(x,y)→(u,v)

(x,y)∈rel int(F )

∆π(x, y) (3.12)

for all faces F ∈ ∆P that contain the vertex (u, v). For k = 1, by analyzing the possible
faces F , one recovers the explicit limit relations stated in [66, Theorem 22].
21 A different approach is taken in [37, Proposition 10] where the subadditivity test uses so-

called supplemental vertices which are introduced to get around the problem of unbounded
cells.
22 This is not restrictive due to Theorem 3.10(ii) and Proposition 3.8(1).
23 Instead of ∆D = [0, 1]k × [0, 1]k, one can choose ∆D = D × D for any D such that
D + Zk = Rk; see the discussion in [19].
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be a nonnegative continuous piecewise linear function over P that is periodic
modulo Zk. Let f ∈ vert(P).24 Then π is minimal for Rf (Rk,Zk) if and only
if the following conditions hold:

1. π(0) = 0,
2. Subadditivity test: ∆π(u,v) ≥ 0 for all (u,v) ∈ ∆D ∩ vert(∆P).
3. Symmetry test: π(f) = 1 and

∆π(u,v) = 0 for all (u,v) ∈ ∆D∩vert(∆P) with u+v ≡ f (mod Zk).
(3.13)

Here (mod Zk) denotes componentwise equivalence modulo 1.

3.5 Combinatorializing the additivity domain

Let π : Rk → R be a continuous piecewise linear function over a pure, complete
polyhedral complex P. Recall the definition of the additivity domain of π,

E(π) = { (x,y) | ∆π(x,y) = 0 } .

We now give a combinatorial representation of this set using the faces of P.
Let

E(π,P) = {F ∈ ∆P | ∆π|F ≡ 0 } .

We consider E(π,P) to include F = ∅, on which∆π|F ≡ 0 holds trivially. Then
E(π,P) is another polyhedral complex, a subcomplex of ∆P. As mentioned,
if π is continuous, then ∆π is continuous. Under this continuity assumption,
we can consider only the set of maximal faces in E(π,P). We define

Emax (π,P) =
{
F ∈ E(π,P)

∣∣ F is a maximal face by set inclusion in E(π,P)
}
.

Lemma 3.12 ([19, Lemma 3.12])

E(π) =
⋃
{F ∈ E(π,P)} =

⋃
{F ∈ Emax (π,P)}.

This combinatorial representation can then be made finite by choosing
representatives as in Remark 3.6.

24 For k = 1, necessarily f ∈ vert(P) [18, Lemma 2.4]. The same is true for genuinely
k-dimensional functions (Theorem 3.10). If, however, f /∈ vert(P), then the condition (3.13)
in the symmetry test must be replaced by a slightly more complicated condition (as stated in
[19, Theorem 3.10, Remark 3.11]). Let S = { (u,v) | u + v ≡ f (mod 1) }. Then ∆P ∩ S :=
{F ∩S : F ∈ ∆P } is again a polyhedral complex. The condition (3.13) is then replaced by:

∆π(u,v) = 0 for all (u,v) ∈ ∆D ∩ vert(∆P ∩ S).



26 Amitabh Basu et al.

3.6 Perturbation functions

We now discuss how to prove that a given minimal function is not a facet or
not extreme. We consider the space of perturbation functions with prescribed
additivities E ⊆ G×G

Π̄E(G,S) =

π̄ : G→ R

∣∣∣∣∣
π̄(0) = 0
π̄(f) = 0

π̄(x) + π̄(y) = π̄(x + y) for all (x,y) ∈ E
π̄(x) = π̄(x + t) for all x ∈ G, t ∈ S

 .

(3.14)
Later we will use this notation even if G is not a group and only require that
0, f ∈ G, and S ⊆ G. Clearly Π̄E(G,S) is a linear space.

The third condition implies that E ⊆ E(π̄) for all π̄ ∈ Π̄E(G,S). From
Lemma 2.11 it follows that π is not extreme if and only if there exists a
π̄ ∈ ΠE(π)(G,S) \ {0} such that π1 = π+ π̄ and π2 = π− π̄ are minimal valid
functions. In a similar vein, if π is not a facet of Rf (G,S), then by the Facet
Theorem, Theorem 2.12, there exists a nontrivial π̄ ∈ Π̄E(π)(G,S) such that
π′ = π+ π̄ is a minimal valid function. Note that this last statement is not an
if and only if statement.

Suppose π is piecewise linear on a polyhedral complex P. We will often
consider a refinement P ′ of P on which we can find a continuous piecewise
linear perturbation π̄ such that π is not extreme.

The basic idea is that if one can find a non-zero function π̄ in the linear
subspace of functions Π̄E(π)(Rk,Zk) then the finite, combinatorial description
of ∆π (since π and therefore ∆π is piecewise linear) allows small perturbations
from π in the direction of π̄ while maintaining minimality.

Theorem 3.13 (Perturbation [19, Theorem 3.13]) Let P be a pure, com-
plete, polyhedral complex in Rk that is periodic modulo Zk and every cell of
P is bounded. Suppose π is minimal and continuous piecewise linear over P.
Suppose π̄ 6≡ 0 is continuous piecewise linear over a refinement P ′ of P, is
periodic modulo Zk and satisfies π̄ ∈ Π̄E(Rk,Zk) where E = E(π). Then π is
not extreme. Furthermore, given π̄, there exists an ε > 0 such that π1 = π+επ̄
and π2 = π − επ̄ are distinct minimal functions that are continuous piecewise
linear over P such that π = 1

2 (π1 + π2).

When π is a continuous piecewise linear function over a polyhedral complex
P, for certain refinements T of P we can decompose perturbation functions π̄
into piecewise linear perturbations over T and other perturbations that vanish
on the vertices of T . For a triangulation T define the vector spaces

Π̄E
T (Rk,Zk) := { π̄ ∈ Π̄E(Rk,Zk) | π̄ is continuous piecewise linear on T }

and

Π̄E
zero(T )(R

k,Zk) := { π̄ ∈ Π̄E(Rk,Zk) | π̄|vert(T ) ≡ 0 }.
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Lemma 3.14 (New result ♣) Suppose π : Rk → R is a minimal valid func-
tion that is piecewise linear over P. Suppose T is a triangulation of Rk such
that there exists q ∈ N such that vert(T ) = 1

qZ
k and pi(vert(∆T )) ⊆ 1

qZ
k for

i = 1, 2, 3 and f ∈ 1
qZ

k. Let E = E(π) and E′ = E(π)∩vert(∆T ), and suppose
T is a refinement of P.

1. π̄ ∈ Π̄E
T (Rk,Zk) if and only if π̄| 1

qZk ∈ Π̄E′
( 1
qZ

k,Zk),

2. For every π̄ ∈ Π̄E(Rk,Zk), there exist unique π̄T ∈ ΠE
T (Rk,Zk) and

π̄zero(T ) ∈ Π̄E
zero(T )(R

k,Zk) such that

π̄ = π̄T + π̄zero(T ).

Proof Let π̄T be a continuous piecewise linear function over T . Since T is a
refinement of P, we have that π is continuous piecewise linear over T as well.
By Lemma 3.12, for any ϕ that is continuous piecewise linear on T we have
that E(ϕ) =

⋃
{F ∈ ∆T | ∆ϕ|F ≡ 0 }. Since ∆ϕ is affine on F , we have that

ϕ|F ≡ 0 if and only if ϕ|vert(F ) ≡ 0. Therefore, it follows that E(π) ⊆ E(π̄) if
and only if ∆π|vert(F ) ≡ 0 implies that ∆π̄|vert(F ) ≡ 0 for all F ∈ ∆T . Since

vert(T ) = 1
qZ

k, this establishes part (1).

Next, let π̄ ∈ Π̄E(Rk,Zk). Let π̄T be the unique extension of π̄| 1
qZk to Rk

via the triangulation T . Note that π̄T is the unique piecewise linear function
over T such that (π̄− π̄T )| 1

qZk ≡ 0. Define π̄zero(T ) = π̄− π̄T . It is left to show

that π̄T , π̄zero(T ) ∈ Π̄E(Rk,Zk).

Since π̄ ∈ Π̄E(Rk,Zk), it follows that π̄T | 1
qZk = π̄| 1

qZk ∈ Π̄E′
( 1
qZ

k,Zk).

Therefore, by part (1), π̄T ∈ Π̄E(Rk,Zk). Since Π̄E(Rk,Zk) is a vector space
containing π̄ and π̄T , we have that π̄zero(T ) = π̄ − π̄T ∈ Π̄E(Rk,Zk) which
establishes part (2). ut

Due to the decomposition in part (2) of Lemma 3.14, we can determine if
a non-trivial perturbation function π̄ ∈ Π̄E(π)(Rk,Zk) exists by considering

separately the spaces Π̄
E(π)
T (Rk,Zk) and Π̄

E(π)
zero(T )(R

k,Zk). This is used in a

procedure to test extremality described in subsection 7.1.

Remark 3.15 The polyhedral complexes PB for B = 1
qZ ∩ [0, 1) from Exam-

ple 3.2 and Pq from Example 3.3 are triangulations of R1 and R2, respectively,
and satisfy the hypotheses of Lemma 3.14. This fact can be seen in Figure 7 for
the case of PB . The polyhedral complex Pq will be discussed more in section 7.

4 The Interval Lemma and its k-dimensional generalizations

In order to prove that a given minimal valid function π is a facet (or an
extreme function), we make use of the additivity domain E(π) of a subadditive
function π : Rk → R. As discussed in the roadmap (subsection 2.3), we would
like to establish that E(π) ⊆ E(π′) implies π = π′ for every minimal valid
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f 1

f

1

Fig. 7 Diagram of a function (blue graphs on the top and the left) on the evenly spaced
complex P 1

10
Z and the corresponding complex ∆P 1

10
Z (gray solid lines), as plotted by the

command plot_2d_diagram(h), where h = not_extreme_1(). Faces of the complex on which
∆π = 0, i.e., additivity holds, are shaded green. The heavy diagonal green lines x + y = f
and x + y = 1 + f correspond to the symmetry condition. At the borders, the projections
pi(F ) of two-dimensional additive faces are shown as gray shadows: p1(F ) at the top border,
p2(F ) at the left border, p3(F ) at the bottom and the right borders. Since the breakpoints
of P 1

10
Z are equally spaced, also ∆P 1

10
Z is very uniform, consisting only of points, lines,

and triangles, and the projections are either a breakpoint in P 1
10

Z or an interval in P 1
10

Z;

compare with Figure 4.

function π′. An important ingredient in this step is to infer that π′ is an
affine function when restricted to projections of E(π). For this purpose, it
is convenient to separate the additivity domain into convex sets, which we
then study independently. In the important case of continuous piecewise linear
functions, we already know from subsection 3.5 that it suffices to study the
maximal additive faces of the complex ∆P.

The primary object of investigation is the functional equation known as
the (additive) Cauchy functional equation, which in its most general form is
the study of real-valued functions θ satisfying

θ(u) + θ(v) = θ(u + v), (u,v) ∈ F (4.15)

where F is some subset of Rk×Rk. We focus on convex sets F that can be used
as building blocks to cover E(π) or other non-convex domains. The simplest
convex sets F of Rk×Rk are direct (Cartesian) products U ×V , where U and
V are convex sets of Rk. For k = 1, this means we consider intervals U ⊆ R
and V ⊆ R and set F = U × V , i.e., we consider the functional equation
θ(u) + θ(v) = θ(u+ v) for all u ∈ U and v ∈ V .

4.1 The classical case: Cauchy’s functional equation

Classically (see, e.g., [1, Chapter 2]), (4.15) is studied for the case F = R×R.
In addition to the obvious regular solutions to (4.15), which are the (homo-

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+plot_2d_diagram(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+not_extreme_1(%22
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geneous) linear functions θ(x) = cx, there exist certain pathological solutions,
which are highly discontinuous [1, Chapter 2, Theorem 3]; these were used in
Propositions 2.2 and 2.4. In order to rule out these solutions, one imposes a
regularity hypothesis. Various such regularity hypotheses have been proposed
in the literature; for example, it is sufficient to assume that the function θ is
bounded on bounded intervals [1, Chapter 2, Theorem 8].

4.2 The bounded case: Gomory–Johnson’s Interval Lemma in R1

The so-called Interval Lemma was introduced by Gomory and Johnson in [49]
(the result appears implicitly in the proof of [48, Theorem 3.3]). This result
concerns the Cauchy functional equation (4.15) on a bounded domain, i.e.,
the arguments u, v, and u + v come from bounded intervals U , V , and their
sum U + V , rather than the entire real line, i.e., additivity is on the set F =
U ×V . In this case, we find that regular solutions are affine on these intervals;
we lose homogeneity of the solutions. In fact, instead of equation (4.15), one
can consider the more general equation f(u) + g(v) = h(u + v), with three
functions f , g, and h instead of one function θ.

Lemma 4.1 (Interval Lemma, [19, Lemma 2.2]) Given real numbers
u1 < u2 and v1 < v2, let U = [u1, u2], V = [v1, v2], and U + V = [u1 +
v1, u2 + v2]. Let f : U → R, g : V → R, h : U + V → R be bounded functions.
If f(u) + g(v) = h(u + v) for every (u, v) ∈ U × V , then there exists c ∈ R
such that f(u) = f(u1) + c(u− u1) for every u ∈ U , g(v) = g(v1) + c(v − v1)
for every v ∈ V , h(w) = h(u1 + v1) + c(w − u1 − v1) for every w ∈ U + V .
In other words, f , g and h are affine with gradient c over U , V , and U + V
respectively.

We provide a brief justification of this result under the assumption that f, g
and h are in C2(R) (continuous first and second derivatives). We differentiate
the relation f(u) + g(v) = h(u + v) with respect to u (holding v fixed in the
interval V ) to obtain f ′(u) = h′(u + v) for all u ∈ int(U). Since the choice
of v was arbitrary, this actually means f ′(u) = h′(u + v) for all u ∈ int(U)
and v ∈ int(V ). But then differentiating this relation with respect to v we
obtain 0 = h′′(u+ v). This implies that h is affine over U + V , and f is affine
with the same slope over U . Similarly, fixing u in U and differentiating with
respect to v we obtain g′(v) = h′(u + v) for all v ∈ int(V ), implying that g
is affine with the same slope over V . The result under the weaker assumption
of boundedness of the functions is obtained by making a discrete version of
these derivative arguments; the details are complicated and we refer the reader
to [19, Lemma 2.2] for a full proof.

4.3 The full-dimensional Cartesian case: Higher-dimensional Interval Lemma

We now discuss generalization of the Interval Lemma (Lemma 4.1) presented in
the previous section to the k-dimensional setting. The first higher dimensional
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versions of Lemma 4.1 in the literature appear in [31, 37] for the case of k = 2
and in [21] for general k, all of which apply when either U or V contains the
origin. The result in [37] applies allows also for so-called star-shaped sets that
contain the origin. We will follow the results of [19], which all for more general
types of convex sets. Similar proofs of these results allow for star-shaped sets
as well, but this is not presented here.

Theorem 4.2 (Higher-dimensional Interval Lemma, full-dimensional
version [19, Theorem 1.6]) Let f, g, h : Rk → R be bounded functions. Let
U and V be convex subsets of Rk such that f(u) + g(v) = h(u + v) for all
(u,v) ∈ U ×V . Assume that aff(U) = aff(V ) = Rk. Then there exists a vector
c ∈ Rk such that f , g and h are affine over U , V and W = U+V , respectively,
with the same gradient c.

4.4 The full-dimensional convex case: Cauchy’s functional equation on
convex additivity domains in Rk

The most direct generalization applies to full dimensional convex sets F .The
general idea of the proof is to consider a point (x,y) in such a convex additivity
domain F , and consider a finite set of smaller subsets F1, . . . , Fk ⊆ F that are
Cartesian products, such that x ∈ F1, y ∈ Fk and int(Fi) ∩ int(Fi+1) 6= ∅ for
each i = 1, . . . , k = 1. Applying Theorem 4.2 on each Fi, we can deduce that
the functions are affine over all of F . This idea of “patching” together simple
additivity domains to obtain affine properties over a more complicated domain
was first introduced in [37, Proposition 23], and then used again in [31, Lemma
10] and [21, Lemmas 3.5, 3.6].

Theorem 4.3 (Convex additivity domain lemma, full-dimensional ver-
sion [19, Theorem 1.7]) Let f, g, h : Rk → R be bounded functions. Let
F ⊆ Rk×Rk be a full-dimensional convex set such that f(u)+g(v) = h(u+v)
for all (u,v) ∈ F . Then there exists a vector c ∈ Rk such that f, g and h are
affine with the same gradient c over int(p1(F )), int(p2(F )) and int(p3(F )),
respectively.

This theorem is obtained by applying the “patching” idea to subsets Fi
that are Cartesian products. Theorem 4.2 is applied to the individual subsets
Fi to deduce affine properties.

It is notable that we can only deduce affine linearity over the interiors of
the projections in Theorem 4.3, as opposed to the conclusion of Theorem 4.2.
This is best possible, as is illustrated in [19, Remark 2.12]. If continuity is
assumed for the functions, then one easily extends the affine-ness property to
the boundary (subsection 4.6).

4.5 The lower-dimensional case: Affine properties with respect to subspaces L

Theorems 4.2 and 4.3 can be established in a significantly more general set-
ting, which takes care of situations in which the set F is not full-dimensional
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(a) (b) (c)

Fig. 8 Cauchy’s functional equation on bounded domains. In each part (a), (b), and (c),
we depict 3 domains in the plane, U, V, U +V , left to right, and an function that is additive
over these domains. (a) Full-dimensional situation. (b) Sum of a one-dimensional and a two-
dimensional set; not a direct sum. (c) Direct sum of (non-parallel) one-dimensional sets.

(Theorems 4.6 and 4.8). Affine properties are deduced with respect to certain
subspaces, which is important for the classification of extreme functions in two
or more dimensions.

We start with a result obtained in [19], in which the additivity domain is
U × V for convex sets U ⊆ Rk and V ⊆ Rk, which are not necessarily of the
same dimension. In this general setting we cannot expect to deduce that the
solutions are affine over U , V , and U + V .

Remark 4.4 Indeed, if U + V is a direct sum, i.e., for every w ∈ U + V there
is a unique pair u ∈ U , v ∈ V with w = u + v, then f(u) + g(v) = h(u + v)
merely expresses a form of separability of h with respect to certain subspaces,
and f and g can be arbitrary functions; see Figure 8 (c).

Definition 4.5 Let U ⊆ Rk. Given a linear subspace L ⊆ Rk, we say π : U →
R is affine with respect to L over U if there exists c ∈ Rk such that π(u2) −
π(u1) = c · (u2 − u1) for any u1,u2 ∈ U such that u2 − u1 ∈ L.

Theorem 4.6 (Higher-dimensional Interval Lemma; [19, Theorem 2.5])
Let f, g, h : Rk → R be bounded functions. Let U and V be convex subsets of
Rk such that f(u) + g(v) = h(u + v) for all (u,v) ∈ F = U × V . Let L be a
linear subspace of Rk such that (L+ U)× (L+ V ) = (L× L) + F ⊆ aff(F ) =
aff(U) × aff(V ). Then there exists a vector c ∈ Rk such that f , g and h are
affine with respect to L over p1(F ) = U , p2(F ) = V and p3(F ) = U + V
respectively, with gradient c.

Theorem 4.2 follows when L = Rk.

Definition 4.7 For a linear space L ⊆ Rk and a set U ⊆ Rk such that for
some u ∈ Rk we have aff(U) ⊆ L + u, we will denote by intL(U) the interior
of U in the relative topology of L+ u.

Note that intL(U) is well defined because either aff(U) = L+u, or intL(U) = ∅.
We now state our most general theorem relating to equation (4.15) on a convex
domain.



32 Amitabh Basu et al.

Theorem 4.8 (Convex additivity domain lemma; [19, Theorem 2.11])
Let f, g, h : Rk → R be bounded functions. Let F ⊆ Rk × Rk be a convex set
such that f(u) + g(v) = h(u+v) for all (u,v) ∈ F . Let L be a linear subspace
of Rk such that (L × L) + F ⊆ aff(F ). Let (u0,v0) ∈ rel int(F ). Then there
exists a vector c ∈ Rk such that f, g and h are affine with gradient c over
intL((u0 +L)∩p1(F )), intL((v0 +L)∩p2(F )) and intL((u0 +v0 +L)∩p3(F )),
respectively.

Theorem 4.3 follows when L = Rk.

4.6 Continuity at the boundary

The one-dimensional Interval Lemma, Lemma 4.1, includes affine properties
on the boundaries. Using this, it is easy to prove that a similar Interval Lemma
holds on all non-degenerate intervals U, V ⊆ R that are any of open, half-open,
or closed. Only in special cases in higher dimensions is it possible to extend
affine properties in Theorem 4.8 to the boundary; in general this is not possible
(see [19, Remark 2.12]).

Of course, if we use the stronger regularity assumption that f , g, and h are
continuous functions (rather than merely bounded functions), then the affine
properties extend to the boundary as well.

Corollary 4.9 (Convex additivity domain lemma for continuous func-
tions; [19, Corollary 2.14])) Let f, g, h : Rk → R be continuous functions.
Let F ⊆ Rk × Rk be a convex set such that f(u) + g(v) = h(u + v) for all
(u,v) ∈ F . Let L be a linear subspace of Rk such that L × L + F ⊆ aff(F ).
Let (u0,v0) ∈ rel int(F ). Then there exists a vector c ∈ Rk such that f, g
and h are affine with gradient c over (u0 + L) ∩ p1(F ), (v0 + L) ∩ p2(F ) and
(u0 + v0 + L) ∩ p3(F ), respectively.

A Updated compendium of extreme functions

The following tables contain the updated compendium of extreme functions.
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Table 1 An updated compendium of known extreme functions for the infinite group prob-
lem I. Parametrized classes of continuous functions for the 1-dimensional case with up to
two slopes.

Functiona Graph Slopes Cont. Notes

gmic 2 C The famous Gomory mixed inte-
ger cut, going back to Gomory’s
1960 paper [42]. Dominates the
gomory_fractional cut, which
is not minimal (Figure 1).

gj_2_slope 2 C Two families of continuous ex-
treme functions with 2 slopes,
from Gomory–Johnson [49]. By
the Gomory–Johnson 2-Slope
Theorem (Theorem 2.13), all
continuous piecewise linear min-
imal valid functions with 2
slopes are extreme.

gj_2_slope_

repeat

2 C

dg_2_step_mir 2 C Described by Dash–Günlük [35].
Extremality follows from the 2-
Slope Theorem (Theorem 2.13).

kf_n_step_mir 2 C Described by Kianfar–Fathi
[59]. Extremality follows from
the 2-Slope Theorem (Theo-
rem 2.13).

bccz_

counterexample
1–2b C Limit of kf_n_step_mir for

n → ∞; not a piecewise linear
function. Described by Basu–
Conforti-Cornuéjols–Zambelli
[15]; see § 6.4.

a A function name shown in typewriter font is the name of the constructor of this function
in the accompanying Sage program.

b The function is not piecewise linear. In one case (µ− < 1) [15], it is absolutely continuous
and thus Lebesgue–almost everywhere differentiable; the derivatives take one of two values
where they exist. In a second case (µ− = 1) [60], it is merely continuous (but not absolutely
continuous) and Lebesgue–almost everywhere differentiable; the derivatives take only one
value where they exist. See subsection 6.4 for more details.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gomory_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope_repeat(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope_repeat(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kf_n_step_mir(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bccz_counterexample(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bccz_counterexample(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kf_n_step_mir(%22
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Table 2 An updated compendium of known extreme functions for the infinite group prob-
lem II. Parametrized classes of continuous functions for the 1-dimensional case with at least
three slopes.

Functiona Graph Slopes Cont. Notes

gj_forward_3_

slope

3 C Described by Gomory–Johnson
[49].

drlm_backward_

3_slope

3 C Described by Dey–Richard–Li–
Miller [39] based on Aráoz–
Evans–Gomory–Johnson [4].

dr_projected_

sequential_

merge_3_slope

3 C Described by Dey–Richard [38],
using their projected_

sequential_merge procedure;
see Table 5 and § 5.2.

bhk_irrational 3 C Only extreme when certain
parameters are Q-linearly
independent. Described by
Basu–Hildebrand–Köppe [18];
see § 6.2.

chen_4_slopeb 4 C Described by Chen [24].

a A function name shown in typewriter font is the name of the constructor of this function
in the accompanying Sage program.

b Chen [24] also constructs a family of 3-slope functions, which he claims to be extreme.
However, his proof for this class is flawed, and none of the functions in the described family
appear to be extreme, as pointed out in [60]. The functions are available as chen_3_slope_

not_extreme.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+projected_sequential_merge(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+projected_sequential_merge(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_3_slope_not_extreme(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_3_slope_not_extreme(%22


Light on the Infinite Group Relaxation I 35

Table 3 An updated compendium of known extreme functions for the infinite group prob-
lem III. Parametrized families of discontinuous functions for the 1-dimensional case.

Functiona Graph Slopes Cont. Notes

ll_strong_

fractionalb
1 D Described by Letchford–Lodi

[62]c; dominates the gomory_

fractional cut (Figure 1). Ex-
treme only if f ≥ 1

2
; then special

case of dg_2_step_mir_limit,
drlm_2_slope_limit (below).

dg_2_step_mir_

limit

1 D Described by Dash–Günlük [35]
(“extended 2-step MIR”). Spe-
cial case of drlm_2_slope_limit
(below). Defined as a limit
of dg_2_step_mir functions; see
§ 6 for a discussion of limits.

drlm_2_slope_

limit

1 D From Dey–Richard–Li–Miller
[39], generalizing dg_2_step_

mir_limit (above). Defined as
a limit; see § 6 for a discussion
of limits.

drlm_3_slope_

limit

2 D Described by Dey–Richard–Li–
Miller [39]. Defined as the
limit of drlm_backward_3_slope
functions; see § 6 for a discus-
sion of limits.

rlm_dpl1_

extreme_3a

2 D A DPL1-extreme function
from Richard–Li–Miller [66,
case 3a]. Proved extreme in
[60]. (All other DPL1-extreme
functions from [66] are known
to be special cases of drlm_

2_slope_limit and drlm_3_

slope_limit.)

a A function name shown in typewriter font is the name of the constructor of this function
in the accompanying Sage program.

b In the survey [65, Table 19.4], this is called “Improved GFC.”
c Note that there is a mistake in [62, Figure 3]. The correct figure appears here.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ll_strong_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ll_strong_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gomory_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gomory_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_3_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_3_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+rlm_dpl1_extreme_3a(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+rlm_dpl1_extreme_3a(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_3_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_3_slope_limit(%22
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Table 4 An updated compendium of known extreme functions for the infinite group prob-
lem IV. “Sporadic” functions for the 1-dimensional case. These functions were found by
computer experiments. They have not been described in the literature as a member of a
parametrized family; but there is no reason to assume this could not be done.

Functiona Graph Slopes Cont. Notes

hildebrand_2_

sided_discont_

1_slope_1

1 D An extreme function that is dis-
continuous on both sides of the
origin, from Hildebrand (2013,
unpublished).

Previously unpublished ♣

hildebrand_2_

sided_discont_

2_slope_1

2 D An extreme function that is dis-
continuous on both sides of the
origin, from Hildebrand (2013,
unpublished).

Previously unpublished ♣

hildebrand_

discont_3_

slope_1

3 D A discontinuous extreme func-
tion with 3 slopes, from Hilde-
brand (2013, unpublished).

Previously unpublished ♣

hildebrand_5_

slope_22_1b
5 C An extreme function with

5 slopes, from Hildebrand
(2013, unpublished). Several
examples are known.

Previously unpublished ♣

kzh_7_slope_1c 7 C An extreme function with
7 slopes, from Köppe–Zhou
[61]. Several examples are
known.

Previously unpublished ♣

kzh_28_slope_1 28 C An extreme function with
28 slopes, from Köppe–Zhou
[61]. The shown graph does
not convey the complexity of
this function, which has 395
breakpoints in [0, 1] sampled
from 1

778
Z.

Previously unpublished ♣

a A function name shown in typewriter font is the name of the constructor of this function
in the accompanying Sage program.

b Several examples are known. Use autocompletion in Sage to obtain a list, by typing
hildebrand_5_slope and pressing the tab key.

c Several examples are known. Use autocompletion in Sage to obtain a list, by typing
kzh_ and pressing the tab key.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_1_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_1_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_1_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_2_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_2_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_2_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_discont_3_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_discont_3_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_discont_3_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_5_slope_22_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_5_slope_22_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_7_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_28_slope_1(%22
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Table 5 An updated compendium of known extreme functions for the infinite group prob-
lem V. Procedures.

Graphs

Procedurea From To Notes

automorphism From Johnson [58]; see [65,
section 19.5.2.1].

multiplicative_

homomorphism

See [65, sections 19.4.1,
19.5.2.1].

projected_

sequential_

merge

Operation ♦1
n from Dey–

Richard [38]; see § 5.2.

restrict_to_

finite_group

Restrictions to finite group
problems Rf ( 1

q
Z,Z) pre-

serve extremality if f and
all breakpoints lie in 1

q
Z.

See § 8.2.

restrict_to_

finite_group

(oversampling=3)

If oversampling by a fac-
tor m ≥ 3, the restriction
is extreme for Rf ( 1

mq
Z,Z)

if and only if the origi-
nal function is extreme. See
§ 8.2.

interpolate_to_

infinite_group

Interpolation from finite
group problems Rf ( 1

q
Z,Z)

preserves minimality, but in
general not extremality. See
§ 8.2.

two_slope_fill_

in

Described by Gomory–
Johnson [48], Johnson [58].
For k = 1, if minimal,
equal to interpolate_to_

infinite_group (above).
For k > 1, see [65, section
19.5.2.3] and [12, 16] for
recent developments.

a A procedure name shown in typewriter font is the name of the corresponding function
in the accompanying Sage program.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+automorphism(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+multiplicative_homomorphism(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+multiplicative_homomorphism(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+projected_sequential_merge(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+projected_sequential_merge(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+projected_sequential_merge(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+restrict_to_finite_group(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+restrict_to_finite_group(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+restrict_to_finite_group(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+restrict_to_finite_group(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+interpolate_to_infinite_group(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+interpolate_to_infinite_group(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+two_slope_fill_in(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+two_slope_fill_in(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+interpolate_to_infinite_group(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+interpolate_to_infinite_group(%22
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Table 6 List of notation in the infinite group problem literature

Gomory–Johnson Dey et al. Basu et al. Surveys

Concept [47, 48] [49] [37, 40] [39] [15] [21] [18, 19] [65] [27] this

Additive group of reals mod 1 I G I I I

Mapping from reals to group
elements

u = F(x) P(u) P(u) u = F(v)

Mapping from group elements
to canonical reals

x = |u| P−1(u) v = F−1(u)

Number of rows of the group
problem

1 1 m m 1 k k m q k

Group (domain of solutions,
valid functions)

U = I G Im Im Rk G = Rk G = Im Rq G = Rk

Subgroup (periodicity) Zk S = Zk Zq S = Zk

Right-hand side u0 u0 r r f −f f r −f f

Group problem P(U, u0) (mDIIGP) (IR) (2.6)

Solutions to the group problem t(u) {t(u)} t(u) t(u) sr sr s(r) t(u) xr y(r)

Solution set of the group prob-
lem

T (U, u0) mDIIGP PI(r,m) MG(G, ∅, r) Gf

Its convex hull Rf (G,S) Rf (G,S)

Its enclosing space V R(G)

Valid functions π(u) π(u) φ(u) φ(u) π(r) π(r) π(r) φ(u) π(r) π(r)

Set of tight solutions for a valid
function

P (π) P (φ) P (π) S(π) P (π)

Subadditivity slack ∇(u, v) ∆π(u,v) ∆π(u,v)

Additivity domain (equality set) E(π) E(φ) E(π) E(π) E(π) E(π)
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B List of notation in the literature

Table 6 (on page 38) compares the notation in the present survey with that in selected
original articles on the infinite group problem and the surveys [27, 65].

Acknowledgements Thanks go to Yuan Zhou for compiling the electronic compendium of
extreme functions in [70], and Chun Yu Hong and Yuan Zhou for their work on the software
[56].
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4. J. Aráoz, L. Evans, R. E. Gomory, and E. L. Johnson, Cyclic group and knapsack facets,
Mathematical Programming, Series B 96 (2003), 377–408.

5. G. Averkov and A. Basu, On the unique-lifting property, Integer Programming and
Combinatorial Optimization, Springer, 2014, pp. 76–87.

6. E. Balas, Intersection cuts – a new type of cutting planes for integer programming,
Operations Research 19 (1971), 19–39.

7. , Facets of the knapsack polytope, Mathematical Programming 8 (1975), no. 1,
146–164.
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16. A. Basu, G. Cornuéjols, and M. Köppe, Unique minimal liftings for simplicial polytopes,
Mathematics of Operations Research 37 (2012), no. 2, 346–355, doi:10.1287/moor.

1110.0536.
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29. G. Cornuéjols, Revival of the Gomory cuts in the 1990s, Annals of Operations Research
149 (2007), no. 1, 63–66.
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