For any sequence \(\{x_n\}_{n=1}^{\infty} \), we say \(\beta \in \mathbb{R} \) is an eventual upper bound of \(\{x_n\}_{n=1}^{\infty} \) if there exists \(N \in \mathbb{N} \) such that \(x_n < \beta \) for all \(n \geq N \). Similarly, we say \(\alpha \in \mathbb{R} \) is an eventual lower bound of \(\{x_n\}_{n=1}^{\infty} \) if there exists \(N \in \mathbb{N} \) such that \(\alpha < x_n \) for all \(n \geq N \).

1. Show that if \(\sum_{k=1}^{\infty} a_k \) converges, \(\lim_{k \to \infty} a_k \to 0 \). [Hint: Use the Cauchy criterion for convergence of the partial sums \(s_n \) and the fact that \(a_n = s_n - s_{n-1} \) for all \(n \geq 2 \)]

2. This is a problem about sequences that is useful for the next problem. Let \(\{s_n\}_{n=1}^{\infty} \) be any sequence. Let \(N \) be a fixed natural number. Define a new sequence \(s'_n = s_{n+N} \) for all \(n \in \mathbb{N} \). Show that \(\lim_{n \to \infty} s'_n = \lim_{n \to \infty} s_n \). (This is sometimes rephrased as “A sequence converges if and only if its tail converges”)

3. Let \(\sum_{k=1}^{\infty} a_k \) be a series. Let \(N \) be a fixed nonnegative integer (i.e., \(N \geq 0 \)). Define a sequence \(b_k = a_{N+k} \) for all \(k \in \mathbb{N} \). Let \(s_n = \sum_{k=1}^{n} a_k \) be the partial sums for the series \(\sum_{k=1}^{\infty} a_k \), and let \(s'_n = \sum_{k=1}^{n} b_k \) be the partial sums for the series \(\sum_{k=1}^{\infty} b_k \).

 (i) Show that \(\exists A \in \mathbb{R}, \forall n \in \mathbb{N}, s_{n+N} = A + s'_n \).

 (ii) Show that \(\{s_n\}_{n=1}^{\infty} \) converges if and only if \(\{s'_n\}_{n=1}^{\infty} \) converges, and \(\lim_{n \to \infty} s_n = A + \lim_{n \to \infty} s'_n \).

 (iii) Show that \(\sum_{k=1}^{\infty} a_k \) converges if and only if \(\sum_{k=1}^{\infty} b_k \) converges. What is the relationship between these two infinite sums? (This is sometimes rephrased as “A series converges if and only if its tail converges”)

4. Do 3.5.1. [Hint: Problems 1 and 3 might be useful]

Suppose \(\sum_{k=1}^{\infty} a_k \) converges. We say that \(\sum_{k=1}^{\infty} a_k \) converges absolutely if \(\sum_{k=1}^{\infty} |a_k| \) converges. We say \(\sum_{k=1}^{\infty} a_k \) converges nonabsolutely if \(\sum_{k=1}^{\infty} |a_k| \) diverges. Thus Dirichlet’s theorem can be restated as :

Dirichlet’s Theorem : If a series \(\sum_{k=1}^{\infty} a_k \) converges absolutely, then \(\sum_{k=1}^{\infty} a_k \) converges unconditionally.

5. Do 3.7.9 (Show that the sequence converges unconditionally) [Hint: Think about if the series converges absolutely and use Dirichlet’s theorem above], 3.7.10 [Hint: Use Dirichlet’s theorem].