1. Recall that a subgroup S is a \textit{discrete subgroup} of \mathbb{R}^n, provided that there exists $\epsilon > 0$ such that the ball $B(0, \epsilon)$ centered at 0 with radius ϵ does not contain any non zero elements from S, i.e. $B(0, \epsilon) \cap S = \{0\}$.

a) Prove that for any point $y \in S$, $B(y, \epsilon) \cap S = \{y\}$, i.e. the ball centered at y with radius ϵ contains only y from S.

b) Use part a) to show that a bounded set $\Pi \subseteq \mathbb{R}^n$ contains only finitely many points from S.

c) Consider a set $\{a_1, \ldots, a_n\}$ of linearly independent vectors in \mathbb{R}^n. Show that the set
\[
\Lambda = \{\mu_1 a_1 + \ldots + \mu_m a_m \mid \mu_1, \ldots, \mu_m \in \mathbb{Z}\}
\]
is a discrete subgroup (and hence a lattice). Hint: Construct an invertible linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $T(\mathbb{Z}^n) = \Lambda$. You can use, without proof, the fact that invertible linear transformations in \mathbb{R}^n map open sets to open sets.

2. Consider a lattice Λ of \mathbb{R}^n. A \textit{lattice subspace} is defined as a subspace $L \subseteq \mathbb{R}^n$ such that L has a basis contained in Λ. Show that the projection of Λ onto the orthogonal complement of L is a discrete subgroup when L is a lattice subspace.

3. Recall that the \textit{orthogonality defect} γ for a basis B of a lattice is defined by
\[
\gamma = \left(\prod_{i=1}^k \|b_i\|/|\det(B)|\right),
\]
where b_i’s are the columns of B. Prove that $\gamma = 1$ if and only if B is orthogonal, i.e. all the b_i’s are mutually orthogonal vectors.

4. **Hermite Normal Form**

Consider the following \textit{elementary column operations} for a matrix A.

i. exchanging two columns.

ii. multiplying a column by -1.

iii. adding an integral multiple of one column to another column.

Recall that any integral matrix A with full row rank can be converted into the form $[B, 0]$ using only the above elementary column operations, such that B is a nonsingular, lower triangular matrix with non-zero entries on the main diagonal. (This is Lemma 4.1 from your notes in IP)

a) Show that, in fact, one can further enforce both of the following properties for B.

- B has only nonnegative entries.

- In each row of B there is a unique maximum element, which sits on the main diagonal of B.

This strengthening of the Hermite Normal Form will be referred to as s-HNF below (for strengthened-HNF).

b) Let A be an $m \times n$ integral matrix with $[B, 0]$ as its s-HNF. Let a_i denote the columns of A and b_i denote the columns of B. Show that
\{\mu_1 a_1 + \ldots + \mu_m a_m \mid \mu_1, \ldots, \mu_m \in \mathbb{Z}\} = \{\lambda_1 b_1 + \ldots + \lambda_n b_n \mid \lambda_1, \ldots, \lambda_n \in \mathbb{Z}\}

c) Let U be a unimodular matrix (recall this means that U is an integral $n \times n$ matrix and has determinant ± 1). Show that the s-HNF of U is the identity matrix. Conclude that the lattice generated by the columns of a unimodular matrix is \mathbb{Z}^n.

5. Consider a lattice Λ of \mathbb{R}^n. Let $y \in \Lambda$ be a lattice point and $r \in \mathbb{R}^n$ be any vector. Show that given any ϵ, there exists a $\lambda > 0$ and a lattice point $p \in \Lambda$ such that $\|p - (y + \lambda r)\| \leq \epsilon$. In other words, for any ϵ, there exists a lattice point (other than y) that has distance at most ϵ from the half-line $\{y + \lambda r \mid \lambda \geq 0\}$.

Hint: You may find Dirichlet’s approximation result useful:

Given real numbers $\alpha_1, \ldots, \alpha_n, \varepsilon$ with $0 < \varepsilon < 1$, there exist integers p_1, \ldots, p_n and q such that

$$\left| \alpha_i - \frac{p_i}{q} \right| < \frac{\varepsilon}{q}, \text{ for } i = 1, \ldots, n, \text{ and } 1 \leq q \leq \varepsilon^{-1}. \quad (1)$$

6. **Norms and Lattices**
 a) Show that if a lattice is generated by an orthogonal basis, then the shortest lattice vector is one of the basis vectors.

 b) Show that a lattice Λ has a non-zero point v such that $\|v\|_{\infty} \leq \sqrt[\det(\Lambda)]{\varepsilon}$.

7. **Basis Reduction and Integer Programming**
 a) Consider a lattice Λ of \mathbb{R}^n generated by a basis $\{b_1, \ldots, b_n\}$ and any point $p \in \mathbb{R}^n$. Show that there exists a $z \in \Lambda$ such that $\|z - p\| \leq \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \|b_i\|^2$.

 b) Let B be an $n \times n$ matrix with entries from \mathbb{R}. Prove that $|\det(B)| \leq (\sqrt{n}M)^n$, where M is the absolute value of the largest entry in B. (This bound was needed for bounding the running time for the LLL algorithm)