Coordinate Minimization

Daniel P. Robinson
Department of Applied Mathematics and Statistics
Johns Hopkins University

November 19, 2019

Outline

1. Introduction

2. Algorithms
 - Cyclic order with exact minimization
 - Cyclic order with fixed step size
 - Steepest direction (Gauss-Southwell rule) with fixed step size
 - Alternatives
 - Summary

3. Examples
 - Linear equations
 - Logistic regression
Given a function $f : \mathbb{R}^n \to \mathbb{R}$, consider the unconstrained optimization problem

$$\text{minimize } f(x)$$

(1)

- We will consider various assumptions on f:
 - nonconvex and differentiable f
 - convex and differentiable f
 - strongly convex and differentiable f
- We will not consider general non-smooth f, because we can not prove anything.
- We will briefly consider structured non-smooth problems, i.e., problems that use an additional (separable) regularizer.

Notation: $f_k := f(x_k)$ and $g_k := \nabla f(x_k)$

Basic idea (coordinate minimization): Compute the next iterative using the update

$$x_{k+1} = x_k - \alpha_k e_i(k)$$

Algorithm 1 General coordinate minimization framework.

1. Choose $x_0 \in \mathbb{R}^n$ and set $k \leftarrow 0$.
2. loop
3. Choose $i(k) \in \{1, 2, \ldots, n\}$.
4. Choose $\alpha_{k} > 0$
5. Set $x_{k+1} \leftarrow x_k - \alpha_k e_i(k)$.
6. Set $k \leftarrow k + 1$.
7. end loop

- α_k is the step size. Options include:
 - fixed, but sufficiently small
 - inexact linesearch
 - exact linesearch
- $i(k) \in \{1, 2, \ldots, n\}$ has to be chosen. Options include:
 - cycle through the entire set
 - choose it uniformly at randomly
 - choose it based on which element of $\nabla f(x_k)$ is the largest in absolute value
- $e_{i(k)}$ is the $i(k)$-th coordinate vector
- this update seeks better points in $\text{span}\{e_{i(k)}\}$.

Notes
Algorithm 2 Coordinate minimization with cyclic order and exact minimization.

1: Choose $x_0 \in \mathbb{R}^n$ and set $k \leftarrow 0$.
2: loop
3: Choose $i(k) = \text{mod}(k, n) + 1$.
4: Calculate the exact coordinate minimizer:
 \[\alpha_k \leftarrow \arg\min_{\alpha \in \mathbb{R}} f(x_k - \alpha e_{i(k)}) \]
5: Set $x_{k+1} \leftarrow x_k - \alpha_k e_{i(k)}$.
6: Set $k \leftarrow k + 1$.
7: end loop

Comments:
- This algorithm assumes that the exact minimizers exist and that they are unique.
- A reasonable stopping condition should be incorporated, such as
 \[\|\nabla f(x_k)\|_2 \leq 10^{-6} \max\{1, \|\nabla f(x_0)\|_2\} \]

An interesting example introduced by Powell [5, formula 2] is
\[\text{minimize } f(x_1, x_2, x_3) := -(x_1 x_2 + x_2 x_3 + x_1 x_3) + \sum_{i=1}^{3} (|x_i| - 1)^2 \]
- f is continuously differentiable and nonconvex
- f has minimizers at $(-1, -1, -1)$ and $(1, 1, 1)$ of the unit cube.
- Coordinate descent with exact minimization started just outside the unit cube near any nonoptimal vertex cycles around neighborhoods of all 6 non-optimal vertices.
- Powell shows that the cyclic nonconvergence behavior is special and is destroyed by small perturbations on this particular example.

Figure: Three dimensional example given above. It shows the possible lack of convergence of a coordinate descent method with exact minimization. This example and others in [5] show that we cannot expect a general convergence result for nonconvex functions similar to that for full-gradient descent. This picture was taken from [7].

Notes

Notes
Theorem 2.1 (see [6, Theorem 5.32])

Assume that the following hold:

- f is continuously differentiable;
- the level set $L_0 := \{ x \in \mathbb{R}^n : f(x) \leq f(x_0) \}$ is bounded; and
- for every $x \in L_0$ and all $j \in \{1, 2, \ldots, n\}$, the optimization problem
 \[
 \min_{\zeta \in \mathbb{R}} f(x + \zeta e_j)
 \]
 has a unique minimizer.

Then, for any limit point x^* of the sequence $\{x_k\}$ generated by Algorithm 2 satisfies
\[
\nabla f(x^*) = 0.
\]

Proof: Since $f(x_{k+1}) \leq f(x_k)$ for all $k \in \mathbb{N}$, we know that the sequence $\{x_k\}_{k=0}^\infty \subset L_0$. Since L_0 is bounded that $\{x_k\}_{k=0}^\infty$ has at least one limit point; let x^* be any such limit point. Thus, there exists a subsequence $K \subset \mathbb{N}$ satisfying
\[
\lim_{k \in K} x_k = x^*. \tag{2}
\]

Combining this with monotonicity of $\{ f(x_k) \}$ and continuity of f also shows that
\[
\lim_{k \to \infty} f(x_k) = f(x^*) \quad \text{and} \quad f(x_k) \geq f(x^*) \quad \text{for all} \quad k \in \mathbb{N}. \tag{3}
\]

We assume $\nabla f(x^*) \neq 0$, and then reach a contradiction.

First, consider the subsets $K_i \subset K, i = 0, \ldots, n - 1$ defined as
\[
K_i := \{ k \in K : k \equiv i \mod n \}.
\]

Since K is an infinite subsequence of the natural numbers, one of the K_i must be an infinite set. Without loss of generality, we assume it is K_0 (the argument is very similar for any other i, because we are using cyclic order).

Let us perform a hypothetical “sweep” of coordinate minimization starting from x^*, so that we would obtain
\[
y^* := x^*_n, \quad \text{with} \quad x^*_n := x^* + \sum_{j=1}^\ell [r^*] e_j \quad \text{for all} \quad \ell = 1, \ldots, n
\]
and note that since $\nabla f(x^*) \neq 0$ by assumption, we must have
\[
f(y^*) < f(x^*). \quad \text{(why?)} \tag{4}
\]

NOTE: If K_i was infinite for some $i \neq 0$, then we would do above “sweep” at x^* starting with coordinate i and going in cyclic order to cover all n coordinates.
Next, notice that by construction of the coordinate minimization scheme, that
\[x_{k+\ell} = x_k + \sum_{j=1}^{\ell} \tau_{k+j-1} e_j \text{ for all } k \in \mathcal{K}_0 \text{ and } 1 \leq \ell \leq n, \]
(5)
where \(\tau_i \) is the step length at iteration \(i \). Therefore,
\[\| x_{k+\ell} - x_k \| = \left\| \begin{pmatrix} \tau_k \\ \tau_{k+1} \\ \vdots \\ \tau_{k+\ell-1} \end{pmatrix} \right\| \leq 2 \max\{\|x\| : x \in \mathcal{L}_0\} < \infty \]
for all \(k \in \mathcal{K}_0 \) and \(1 \leq \ell \leq n \). We used the assumption that \(\mathcal{L}_0 \) is bounded.

Since this shows that the set \(\{ (\tau_k, \tau_{k+1}, \ldots, \tau_{k+n-1})^T \}_{k \in \mathcal{K}_0} \) is bounded, we may pass to a subsequence \(\mathcal{K}' \subseteq \mathcal{K}_0 \) with
\[\lim_{k \in \mathcal{K}'} \begin{pmatrix} \tau_k \\ \tau_{k+1} \\ \vdots \\ \tau_{k+n-1} \end{pmatrix} = \tau^* \text{ for some } \tau^* \in \mathbb{R}^n. \]
(6)
Taking the limit of (5) over \(k \in \mathcal{K}' \subseteq \mathcal{K}_0 \) for each \(\ell \), and using (2) and (6) we find that
\[\lim_{k \in \mathcal{K}'} x_{k+\ell} = x^* + \sum_{j=1}^{\ell} [\tau^*]^j e_j \text{ for each } 1 \leq \ell \leq n. \]
(7)

We next claim the following, which we will prove by induction:
\[[\tau^*]^p = [\tau^*]^p \text{ for all } 1 \leq p \leq n, \]
(8)
\[\lim_{k \in \mathcal{K}'} x_{k+p} = x^*_p \text{ for all } 1 \leq p \leq n. \]
(9)

Base case: \(p = 1 \).

We know from the coordinate minimization that
\[f(x_{k+1}) \leq f(x_k + \tau e_1) \text{ for all } k \text{ and } \tau \in \mathbb{R}. \]
Taking limits over \(k \in \mathcal{K}' \subseteq \mathcal{K} \) and using continuity of \(f \), (7) with \(\ell = 1 \), and (2) yields
\[f(x^* + [\tau^*]_1 e_1) = f(\lim_{k \in \mathcal{K}'} x_{k+1}) = \lim_{k \in \mathcal{K}'} f(x_{k+1}) \leq \lim_{k \in \mathcal{K}'} f(x_k + \tau e_1) \]
\[= f(\lim_{k \in \mathcal{K}'} x_k + \tau e_1) = f(x^* + \tau e_1) \text{ for all } \tau \in \mathbb{R}. \]

Since the minimizations in coordinate directions are unique by assumption, we know that \([\tau^*]^1 = [\tau^*]^1 \), which is the first desired result. Also, combining it with (7) gives
\[\lim_{k \in \mathcal{K}'} x_{k+1} = x^* + [\tau^*]_1 e_1 = x^* + [\tau^*]_1 e_1 \equiv x^*_1, \]
which completes the base case.
Induction step: assume that (8) and (9) hold for \(1 \leq p \leq \bar{p} - 1\).

We know from the coordinate minimization that
\[
f(x_{k+\bar{p}+1}) \leq f(x_{k+\bar{p}} + \tau e_{\bar{p}+1})
\]
for all \(k \in \mathbb{N}\) and \(\tau \in \mathbb{R}\).

Taking the limit over \(k \in K'\), continuity of \(f\), (7) with \(\ell = \bar{p} + 1\), and (9) give
\[
f\left(x^* + \sum_{j=1}^{\bar{p}+1} [\tau^*]_j e_j\right) = f(\lim_{k \in K'} x_{k+\bar{p}+1}) = \lim_{k \in K'} f(x_{k+\bar{p}} + \tau e_{\bar{p}+1})
\]
\[
= f(\lim_{k \in K'} x_{k+\bar{p}} + \tau e_{\bar{p}+1}) = f(x^* + \tau e_{\bar{p}+1})
\]
for all \(\tau \in \mathbb{R}\).

Thus, the definition of \(x^*_\bar{p}\), and the fact that (8) holds for all \(1 \leq p \leq \bar{p}\) show that
\[
f(x^*_\bar{p} + \sum_{j=1}^{\bar{p}} [\tau^*]_j e_j) \leq f(x^* + \sum_{j=1}^{\bar{p}+1} [\tau^*]_j e_j)
\]
\[
= f(x^* + \sum_{j=1}^{\bar{p}+1} [\tau^*]_j e_j)
\]
\[
= f(x^* + \sum_{j=1}^{\bar{p}+1} [\tau^*]_j e_j) \leq f(x^* + \tau e_{\bar{p}+1})
\]
for all \(\tau \in \mathbb{R}\).

Uniqueness of the minimizer implies \([\tau^*]_{\bar{p}+1} = [\tau^*]_{\bar{p}+1}\) and combining with (7) gives
\[
\lim_{k \in K'} x_{k+\bar{p}+1} = x^* + \sum_{j=1}^{\bar{p}+1} [\tau^*]_j e_j = x^* + \sum_{j=1}^{\bar{p}+1} [\tau^*]_j e_j \equiv x^*_{\bar{p}+1},
\]
which completes the proof by induction.

From our induction proof, we have that
\[
\tau^* = \tau^\ell.
\]

Combining this with (7) and the definition of \(y^*\) gives
\[
\lim_{k \in K'} x_{k+n} = x^* + \sum_{j=1}^{n} \tau^*_j e_j = x^* + \sum_{j=1}^{n} \tau^*_j e_j \equiv x^*_{n} \equiv y^*.
\]

(10)

Finally, combining (3), continuity of \(f\), (10), and (4) shows that
\[
f(x^*) = \lim_{k \in K'} f(x_{k+n}) = f(\lim_{k \in K'} x_{k+n}) = f(y^*) < f(x^*),
\]
which is a contradiction. This completes the proof. \(\blacksquare\)
Notation:

- Let \(L_j \) denote the \(j \)th component Lipschitz constant, i.e., it satisfies
 \[
 \left| \nabla_j f(x + te_j) - \nabla_j f(x) \right| \leq L_j |t| \]
 for all \(x \in \mathbb{R}^n \) and \(t \).

- Let \(L_{\max} \) denote the coordinate Lipschitz constant, i.e., it satisfies
 \[
 L_{\max} := \max_{1 \leq i \leq n} L_i.
 \]

- Let \(L \) denote the Lipschitz constant for \(\nabla f \).

Algorithm 3 Coordinate minimization with cyclic order and a fixed step size.

1: Choose \(\alpha \in (0, 1/L_{\max}] \).
2: Choose \(x_0 \in \mathbb{R}^n \) and set \(k \leftarrow 0 \).
3: \textbf{loop}
4: \hspace{0.5cm} Choose \(i(k) = \text{mod}(k, n) + 1 \).
5: \hspace{0.5cm} Set \(x_{k+1} \leftarrow x_k - \alpha \nabla_{i(k)} f(x_k) e_{i(k)} \).
6: \hspace{0.5cm} Set \(k \leftarrow k + 1 \).
7: \textbf{end loop}

Comments:

- A reasonable stopping condition should be incorporated, such as
 \[
 \|\nabla f(x_k)\|_2 \leq 10^{-6} \max\{1, \|\nabla f(x_0)\|_2\}
 \]

- A maximum number of allowed iterations should be included in practice.

Theorem 2.2 (see [1, Theorem 3.6, Theorem 3.9] and [7, Theorem 3])

Suppose that \(\alpha = 1/L_{\max} \) and let the following assumptions hold:

- \(\nabla f \) is globally Lipschitz continuous
- \(f \) has a minimizer \(x^* := \min_{x \in \mathbb{R}^n} f(x) \)
- there exists a scalar \(R_0 \) such that the diameter of the level set \(\{x \in \mathbb{R}^n : f(x) \leq f(x_0)\} \) is bounded by \(R_0 \).

Then, the iterate sequence \(\{x_k\} \) of Algorithm 3 satisfies

\[
\min_{k=0,\ldots,T} \|\nabla f(x_k)\| \leq \sqrt{\frac{4nL_{\max}(1 + nL^2/L_{\max})f(x_0) - f^*}{T + 1}} \quad \forall T \in \{n, 2n, 3n, \ldots\} \tag{11}
\]

If \(f \) is convex, then

\[
f(x_T) - f^* \leq \frac{4nL_{\max}(1 + nL^2/L_{\max})R_0^2}{T + 8} \quad \forall T \in \{n, 2n, 3n, \ldots\}. \tag{12}
\]

If \(f \) is \(\mu \)-strongly convex, then

\[
f(x_T) - f^* \leq \left(1 - \frac{\mu}{2L_{\max}(1 + nL^2/L_{\max})}\right)^{T/n} (f(x_0) - f^*) \quad \forall T \in \{n, 2n, 3n, \ldots\}
\]
Proof: See [1, Lemma 3.3, Theorem 3.6 and Theorem 3.9] and use (i) each iteration “k” in [1] is a cycle of \(n \) iterations; (ii) choose in [1] the values \(\bar{L}_i = L_{\text{max}} \) for all \(i \); (iii) in [1] we have \(p = 1 \) since our blocks of variables are singletons, i.e., coordinate descent.

Comments on Theorem 2.2:

- The numerator in (11) and (12) is \(O(n^2) \), while the numerator in the analogous result for the random coordinate choice with fixed step size is \(O(n) \) (see SGD notes and HW 4). But Theorem 2.2 is a deterministic result, while the result for random coordinate choice is in expectation.
- Recall also with the full gradient the iteration complexity has no dependence on \(n \). But every iteration itself is \(n \) times more expensive than cyclic or random choice.
- It can be shown that \(L \leq \sum_{j=1}^n L_j \) (see [3, Lemma 2 with \(\alpha = 1 \)])
- It follows from the fact that
 \[
 |\nabla f(x + te_j) - \nabla f(x)| \leq ||\nabla f(x + te_j) - \nabla f(x)||_2 \leq L|t|
 \]
 holds for all \(j, t, \) and \(x \) that \(L_j \leq L \).
- By combining the previous two bullet points, we find that
 \[
 L_{\text{max}} \equiv \max_j L_j \leq L \leq \sum_{j=1}^n L_j \leq nL_{\text{max}}
 \]
 so that
 \[
 1 \leq \frac{L}{L_{\text{max}}} \leq n
 \]
- Roughly speaking, \(L/L_{\text{max}} \) is closer to 1 when the coordinates are "more decoupled". In light of (12), the complexity result for coordinate descent becomes better as the variables become more decoupled. This makes sense!
Notation:
- Let L_j denote the jth component Lipschitz constant, i.e., it satisfies
 $$\| \nabla f(x + te_j) - \nabla f(x) \| \leq L_j |t| \text{ for all } x \in \mathbb{R}^n \text{ and } t.$$
- Let L_{max} denote the coordinate Lipschitz constant, i.e., it satisfies
 $$L_{\text{max}} := \max_{1 \leq i \leq n} L_i.$$

Algorithm 4 Coordinate minimization with Gauss-Southwell Rule and a fixed step size.

1: Choose $\alpha \in (0, 1/L_{\text{max}}]$.
2: Choose $x_0 \in \mathbb{R}^n$ and set $k \leftarrow 0$.
3: loop
4: Calculate $i(k)$ as the steepest coordinate direction, i.e.,
 $$i(k) \leftarrow \arg\max_{1 \leq i \leq n} |\nabla_i f(x_k)|$$
5: Set $x_{k+1} \leftarrow x_k - \alpha \nabla_i f(x_k)e_{i(k)}$.
6: Set $k \leftarrow k + 1$.
7: end loop

Comments:
- A reasonable stopping condition should be incorporated, such as
 $$\|\nabla f(x_k)\|_2 \leq 10^{-6} \max\{1, \|\nabla f(x_0)\|_2\}$$

Theorem 2.3
Suppose that $\alpha = 1/L_{\text{max}}$ and let the following assumptions hold:
- ∇f is globally Lipschitz continuous
- f has a minimizer x^* and $f^* := f(x^*) = \min_{x \in \mathbb{R}^n} f(x)$
- there exists a scalar K_0 such that the diameter of the level set
 $$\{ x \in \mathbb{R}^n : f(x) \leq f(x_0) \}$$
 is bounded by K_0.

Then, the iterate sequence $\{x_k\}$ computed from Algorithm 4 satisfies

$$\min_{k=0, \ldots, T} \|\nabla f(x_k)\| \leq \sqrt{\frac{2nL_{\text{max}}(f(x_0) - f^*)}{T + 1}} \quad \forall T \geq 1$$

If f is convex, then

$$f(x_T) - f^* \leq \frac{2nL_{\text{max}}K_0^2}{T} \quad \forall T \geq 1.$$

If f is μ-strongly convex, then

$$f(x_T) - f^* \leq \left(1 - \frac{\mu}{nL_{\text{max}}} \right)^k (f(x_0) - f^*) \quad \forall T \geq 1.$$
Proof: We recall our fundamental inequality (see the “Stochastic Gradient Descent” lecture notes on random coordinate choice)

\[f(x_{k+1}) \leq f(x_k) - \frac{1}{2L_{\text{max}}} (\nabla_i(f(x_k)))^2. \]

Combining this with the choice \(i(k) \leftarrow \text{argmax}_{1 \leq i \leq n} |\nabla_i f(x_k)| \) and the standard norm inequality \(\|v\|_2 \leq \sqrt{n} \|v\|_\infty \), it holds that

\[
\begin{align*}
f(x_{k+1}) & \leq f(x_k) - \frac{1}{2L_{\text{max}}} (\nabla_i(f(x_k)))^2 \\
& = f(x_k) - \frac{1}{2L_{\text{max}}} \|\nabla f(x_k)\|_\infty^2 \quad (13) \\
& \leq f(x_k) - \frac{1}{2nL_{\text{max}}} \|\nabla f(x_k)\|_2^2. \quad (14)
\end{align*}
\]

Recall equation (2.1) from the “Smooth Convex Optimization” lecture notes:

\[f(x_k) - f^* \leq R_0 \|\nabla f(x_k)\|_2. \]

Substituting the above into (14)

\[f(x_{k+1}) - f^* \leq f(x_k) - f^* - \frac{1}{2nL_{\text{max}}} \|\nabla f(x_k)\|_2^2 \leq f(x_k) - f^* - \frac{1}{2nL_{\text{max}}R_0^2} (f(x_k) - f^*)^2. \]

Using the notation \(\Delta_k = f(x_k) - f^* \), this is equivalent to

\[\Delta_{k+1} \leq \Delta_k - \frac{1}{2nL_{\text{max}}R_0^2} \Delta_k^2. \]

From the previous slide, we have

\[\Delta_{k+1} \leq \Delta_k - \frac{1}{2nL_{\text{max}}R_0^2} \Delta_k^2 \]

which is exactly the same as the inequality (2.2) from the “Smooth Convex Optimization” lecture notes, except with an extra factor of the dimension \(n \) in the denominator of the last term. Then, as shown in that proof, we have

\[f(x_k) - f^* = \Delta_k \leq \frac{2nL_{\text{max}}R_0^2}{k} \]

which is the desired result for convex \(f \).
Next, assume that f is μ-strongly convex, and recall the following inequality we established in the proof of Theorem 2.3 of the “Smooth Convex Optimization” lecture notes:

\[f^* \geq f(x_k) - \frac{1}{2\mu} \|\nabla f(x_k)\|^2. \]

Subtracting f^* from each side of (14) and then using the previous inequality shows that

\[
\begin{align*}
 f(x_{k+1}) - f^* &\leq f(x_k) - f^* - \frac{1}{2nL_{\max}} \|\nabla f(x_k)\|^2 \\
 &\leq f(x_k) - f^* - \frac{\mu}{nL_{\max}} (f(x_k) - f^*) = \left(1 - \frac{\mu}{nL_{\max}}\right) (f(x_k) - f^*)
\end{align*}
\]

so that

\[
f(x_k) - f^* \leq \left(1 - \frac{\mu}{nL_{\max}}\right)^k (f(x_0) - f^*)
\]

which is the last desired result.

Comments so far for fixed step size:

- Cyclic has the worst dependence on n:
 - Cyclic: $O(n^2)$
 - Random and Gauss-Southwell: $O(n)$
 - Random is a rate in expectation.
 - Gauss-Southwell is a deterministic rate.

- But Gauss-Southwell has $O(n)$ complexity for each iteration (similar to full gradient descent), whereas cyclic and random choice have $O(1)$ complexity for each iteration.

- There is a better analysis for Gauss-Southwell when we assume that f is strongly convex that changes the above comment! (See [4]). We show this next.
Theorem 2.4

Suppose that $\alpha = 1/L_{\text{max}}$ and let the following assumptions hold:

- f is ℓ_1-strongly convex, i.e., there exists $\mu_1 > 0$ such that
 \[f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{\mu_1}{2} \|y - x\|_1^2 \text{ for all } \{x, y\} \subset \mathbb{R}^n \]

- ∇f is globally Lipschitz continuous

- the minimum value of f is obtained

Then, the iterate sequence $\{x_k\}$ computed from Algorithm 4 satisfies

\[
f(x_k) - f^* \leq \left(1 - \frac{\mu_1}{L_{\text{max}}}\right)^k (f(x_0) - f^*)
\]

Proof (see [4]): Using ℓ_1-strong convexity means that

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{\mu_1}{2} \|y - x\|_1^2 \text{ for all } \{x, y\} \subset \mathbb{R}^n
\]

for the ℓ_1-strong convexity parameter μ_1. If we now minimize both sides with respect to y and replace x by x_k, we find that

\[
f^* = \min_{y \in \mathbb{R}^n} f(y)
\]

\[
\geq \min_{y \in \mathbb{R}^n} f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{\mu_1}{2} \|y - x_k\|_1^2
\]

\[
= f(x_k) + \nabla f(x_k)^T (y_k^* - x_k) + \frac{\mu_1}{2} \|y_k^* - x_k\|_1^2 \quad \text{(why? exercise)}
\]

\[
= f(x_k) - \frac{1}{2\mu_1} \|\nabla f(x_k)\|_{\infty}^2
\]

where $y_k^* := x_k + z_k^*$ with

\[
[z_k^*]_i := \begin{cases} 0 & \text{if } i \neq \ell \\ -\frac{\nabla f(x_k)}{\mu_1} & \text{if } i = \ell \end{cases}
\]

and ℓ any index satisfying

\[
\ell \in \{j : \|\nabla f(x_k)\| = \|\nabla f(x_k)\|_{\infty}\}.
\]

Therefore, we have that

\[
\|\nabla f(x_k)\|_{\infty}^2 \geq 2\mu_1 (f(x_k) - f^*).
\]
From the previous slide, we showed that
\[\| \nabla f(x_k) \|_\infty \geq 2 \mu_1 (f(x_k) - f^*). \]
Subtracting \(f^* \) from both sides of (13) and using the previous inequality shows that
\[
\begin{align*}
 f(x_{k+1}) - f^* & \leq f(x_k) - f^* - \frac{1}{2L_{\text{max}}} \| \nabla f(x_k) \|_\infty^2 \\
 & \leq f(x_k) - f^* - \frac{\mu_1}{L_{\text{max}}} (f(x_k) - f^*) \\
 & = \left(1 - \frac{\mu_1}{L_{\text{max}}} \right) (f(x_k) - f^*).
\end{align*}
\]
Applying this inequality recursively gives
\[
 f(x_k) - f^* \leq \left(1 - \frac{\mu_1}{L_{\text{max}}} \right)^k (f(x_0) - f^*)
\]
which is the desired result.

For **strongly convex** functions:
- **Random** coordinate choice has the expected rate of
 \[
 \mathbb{E}[f(x_k)] - f^* \leq \left(1 - \frac{\mu}{nL_{\text{max}}} \right)^k (f(x_0) - f^*).
 \]
- **Gauss-Southwell** coordinate choice has the deterministic rate of
 \[
 f(x_k) - f^* \leq \left(1 - \frac{\mu_1}{L_{\text{max}}} \right)^k (f(x_0) - f^*)
 \] \[(15)\]
- The bound for Gauss-Southwell is better since
 \[
 \frac{\mu}{n} \leq \mu_1 \leq \mu
 \]
 so that
 \[
 \mu_1 \geq \frac{\mu}{n} \iff \frac{\mu_1}{L_{\text{max}}} \geq \frac{\mu}{nL_{\text{max}}} \iff \left(1 - \frac{\mu_1}{L_{\text{max}}} \right) \leq \left(1 - \frac{\mu}{nL_{\text{max}}} \right)
 \]
Example: A Simple Diagonal Quadratic Function

Consider the problem

\[
\min_{x \in \mathbb{R}^n} g^T x + \frac{1}{2} x^T H x
\]

where

\[H = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n) \]

with \(\lambda_i > 0 \) for all \(i \in \{1, 2, \ldots, n\} \). For this problem, we know that

\[
\mu = \min\{\lambda_1, \lambda_2, \ldots, \lambda_n\} \quad \text{and} \quad \mu_1 = \left(\sum_{i=1}^n \frac{1}{\lambda_i} \right)^{-1}
\]

Case 1: For \(\lambda_1 = \alpha \) for some \(\alpha > 0 \), the minimum value for \(\mu_1 \) occurs when \(\alpha = \lambda_1 = \lambda_2 = \cdots = \lambda_n \), which gives

\[
\mu = \alpha \quad \text{and} \quad \mu_1 = \frac{\alpha}{n}.
\]

Thus, the convergence constants are:

(random selection) : \(1 - \frac{\mu}{nL_{\max}} = 1 - \frac{\alpha}{nL_{\max}} \)

(Gauss-Southwell selection) : \(1 - \frac{\mu_1}{L_{\max}} = 1 - \frac{\alpha}{nL_{\max}} \)

so the convergence constants are the same; this is the worst case for Gauss-Southwell.

Case 2: For this other extreme case, let us suppose that

\[
\lambda_1 = \beta \quad \text{and} \quad \lambda_2 = \lambda_3 = \cdots = \lambda_n = \alpha
\]

with \(\alpha \geq \beta \). For this case, it can be shown that

\[
\mu = \beta \quad \text{and} \quad \mu_1 = \frac{\beta \alpha^{n-1}}{\alpha^{n-1} + (n-1)\beta \alpha^{n-2}} = \frac{\beta \alpha}{\alpha + (n-1)\beta}
\]

If we now take the limit as \(\alpha \to \infty \) we find that

\[
\mu = \beta \quad \text{and} \quad \mu_1 \to \beta = \mu
\]

Thus, the convergence constants (in the limit) are:

(random selection) : \(1 - \frac{\mu}{nL_{\max}} = 1 - \frac{\beta}{nL_{\max}} \)

(Gauss-Southwell selection) : \(1 - \frac{\mu_1}{L_{\max}} = 1 - \frac{\beta}{L_{\max}} \)

so that Gauss-Southwell is a factor \(n \) faster than using a random coordinate selection.
Alternative 1 (strongly convex): individual coordinate Lipschitz constants.

The iteration update is

\[x_{k+1} = x_k + \frac{1}{L_i(k)} \nabla_i f(x_k) e_i(k) \]

- Using a similar analysis as before, it can be shown

\[f(x_k) - f^* \leq \left(\prod_{j=1}^{k} \left(1 - \frac{\mu_1}{L_j} \right) \right) (f(x_0) - f^*) \]

- Better decrease than prior analysis since (see (15))

\[\text{new rate} = \left(\prod_{j=1}^{k} \left(1 - \frac{\mu_1}{L_j} \right) \right) \leq \left(1 - \frac{\mu_1}{L_{\text{max}}} \right)^k \text{ previous rate} \]

- faster provided at least one of the used \(L_j \) satisfies \(L_j < L_{\text{max}} \).

Alternative 2 (strongly convex): Lipschitz sampling.

Use a random coordinate direction chosen using a non-uniform probability distribution:

\[P(i(k) = j) = \frac{L_j}{\sum_{\ell=1}^{n} L_\ell} \text{ for all } j \in \{1, 2, \ldots, n\} \]

- Using an analysis similar to the previous one, but using the new probability distribution when computing the expectation, it can be shown that

\[\mathbb{E}[f(x_{k+1})] - f^* \leq \left(1 - \frac{\mu}{nL} \right) (\mathbb{E}[f(x_k)] - f^*) \]

with \(\bar{L} \) being the average component Lipschitz constant, i.e.,

\[\bar{L} := \frac{1}{n} \sum_{i=1}^{n} L_i \]

- The analysis was first performed in [2].

- This rate is faster than uniform random sampling if not all of the component Lipschitz constants are the same.
Alternative 3 (strongly convex): Gauss-Southwell-Lipschitz rule.

Choose $i(k)$ according to the rule

$$i(k) \leftarrow \max_{1 \leq i \leq n} \left(\frac{\nabla_i f(x_k)^2}{L_i} \right)$$ \hspace{1cm} (16)

- We recall our fundamental inequality for coordinate descent with step size
 $$\alpha_k = \frac{1}{L_{\text{max}}}$$
 $$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L_i(i)} \left(\nabla_i f(x_k) \right)^2$$ \hspace{1cm} (17)
- The update (16) is designed to choose $i(k)$ to minimize the guaranteed decrease given by (17), which uses the component Lipschitz constants.
- It may be shown, using this update, that
 $$f(x_{k+1}) - f^* \leq (1 - \mu_L) (f(x_k) - f^*)$$
 where μ_L is the strong convexity parameter with respect to $\|v\|_L := \sum_{i=1}^{n} \sqrt{L_i} |v_i|$.
- It is shown in [4, Appendix 6.2] that
 $$\max \left\{ \frac{\mu}{nL}, \frac{\mu_1}{L_{\text{max}}} \right\} \leq \mu_L \leq \frac{\mu_1}{\min_{1 \leq i \leq n} \{L_i\}}$$
- At least as fast as the fastest of Gauss-Southwell and Lipschitz sampling options.

Ordering of constant in linear convergence results when f is strongly convex:

- random (uniform sampling, L_{max})
- Gauss-Southwell (L_{max})
- Gauss-Southwell with $\{L_i\}$
- random (Lipschitz sampling, $\{L_i\}$)
- Gauss-Southwell-Lipschitz

Comments:
- Gauss-Southwell-Lipschitz: the best rate, but is the most expensive per iteration.
- Better rates if you know and use $\{L_i\}$ instead of just using their max, i.e., L_{max}.
Linear Equations

Let \(m \leq n, b \in \mathbb{R}^m, \) and \(A^T = (a_1, \ldots, a_n) \in \mathbb{R}^{n \times m} \) with \(\|a_i\|_2 = 1 \) for all \(i \).

Furthermore, suppose that \(A^T \) has full column rank, meaning that the linear system

\[
Aw = b
\]

has infinitely many solutions. To seek the least-length solution, we wish to solve

\[
\text{minimize } \frac{1}{2} ||w||_2^2 \text{ subject to } Aw = b.
\]

The Lagrangian dual problem is

\[
\text{minimize } f(x) := \frac{1}{2} ||A^T x||_2^2 - b^T x,
\]

where we note that \(\nabla f(x) = A A^T x - b \) and \(\nabla_i f(x) = a_i^T A^T x - b_i \). The solutions to the primal and dual are related via \(w^* = A^T x^* \). Coordinate descent gives

\[
w_{k+1} = w_k - \alpha (a_i^T A^T x_k - b_i) a_i.
\]

If we maintain an estimate \(x_k = A^T w_k \), then we see that

\[
w_{k+1} = A^T x_{k+1} = A^T (x_k - \alpha (a_i^T A^T x_k - b_i) e_i)
\]

so that the \(i \)-th equation is satisfied exactly.

Summary

- Coordinate minimization for solving the dual problem associated with linear equations along the direction \(e_i \) with \(\alpha = 1 \) satisfies the \(i \)-th linear equation exactly.
- Sometimes called the method of successive projections.
- Update: \(w_{k+1} = w_k - \alpha (a_i^T w_k - b_i) a_i \)
 - \((n+1) \) addition/subtractions
 - \((2n+1) \) multiplications
 - \((3n+2) \) total floating-point operations
- Computing \(\nabla f(x) \) requires a multiplication with \(A \), which is much more expensive.
Logistic Regression

Give data \(\{d_j\}_{j=1}^N \subset \mathbb{R}^n \) and labels \(\{y_j\}_{j=1}^N \subset \{-1, 1\} \) associated with the data, solve

\[
\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{N} \sum_{j=1}^N \log \left(1 + e^{-y_j d_j^T x} \right).
\]

If we define the data matrix \(D \) such that

\[
D = \begin{pmatrix} d_1^T \\ \vdots \\ d_N^T \end{pmatrix},
\]

then it follows that

\[
\nabla_i f(x) = -\frac{1}{N} \sum_{j=1}^N \frac{e^{-y_j d_j^T x}}{1 + e^{-y_j d_j^T x}} y_j d_{ji}.
\]

Consider the coordinate minimization update

\[
x_{k+1} = x_k - \alpha \nabla_i f(x) e_{i(k)}
\]

for some \(i(k) \in \{1, 2, \ldots, n\} \) and \(\alpha \in \mathbb{R} \).

For efficiency, we store and update the required quantities \(\{Dx_k\} \) using

\[
Dx_{k+1} = D(x_k + \alpha \nabla_i f(x) e_{i(k)}) = Dx_k + \alpha \nabla_i f(x) De_{i(k)} = Dx_k + \alpha \nabla_i f(x) D(:, i(k)),
\]

where \(D(:, i(k)) \) denotes the \(i(k) \)-th column of \(D \); if \(x_0 \leftarrow 0 \), then we can set \(Dx_0 \leftarrow 0 \).

Logistic Regression

Summary

- Update to obtain \(Dx_{k+1} \) requires a single vector-vector add.
- Computing \(\nabla f(x_k) \) only requires accessing a single column of the data matrix \(D \).
- Computing \(\nabla f(x) \) requires accessing the entire data matrix \(D \).

