Outline

1. The Generic Trust-Region Framework
 - Introduction
 - Modeling the objective function
 - Almost a complete trust-region algorithm
 - Model decrease requirement (the Cauchy step)
 - Global convergence of a complete trust-region algorithm

2. The Trust-Region Subproblem: Beyond the Cauchy Point
 - “Exact” solution of the two-norm trust-region subproblem
 - Characterization of a global minimizer
 - An algorithm for computing the global solution
 - Approximate solutions
 - Dogleg step
 - Steihaug step (truncated Conjugate Gradient (CG))
 - Generalized Lanczos Trust-Region (GLTR) Step
The problem

\[\text{minimize } f(x) \quad \text{for } x \in \mathbb{R}^n \]

where the objective function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \)

- assume that \(f \in C^1 \) (sometimes \(C^2 \)) and is Lipschitz continuous
- in practice this assumption may be violated, but the algorithms we develop may still work
- in practice it is very rare to be able to provide an explicit minimizer
- we consider iterative methods: given starting guess \(x_0 \), generate sequence \(\{x_k\} \) for \(k = 1, 2, \ldots \)
 - **AIM**: ensure that a subsequence has some favorable limiting properties
 - satisfies first-order necessary conditions
 - satisfies second-order necessary conditions

Notation: \(f_k = f(x_k) \), \(g_k = g(x_k) \), \(H_k = H(x_k) \)

Linesearch versus Trust-Region

Linesearch
- considered descent methods, i.e., \(f(x_{k+1}) < f(x_k) \)
- direction first (search direction \(p_k \)), length second (linesearch \(\alpha_k \))
- ensure that this direction is a descent direction, i.e.,
 \[g_k^T p_k < 0 \]
 so that, for small steps along \(p_k \), the objective function \(f \) will be reduced
- the computation of \(\alpha_k \) may itself require an iterative procedure
- generic update for linesearch methods is given by
 \[x_{k+1} = x_k + \alpha_k p_k \]

Trust-region
- will consider descent methods, i.e., \(f(x_{k+1}) \leq f(x_k) \)
- length first (trust-region radius \(\delta_k \)), direction second ("solve" subproblem for \(s_k \))
- pick step \(s_k \) to reduce some model of \(f(x_k + s) \)
- generic update is
 \[x_{k+1} \leftarrow \begin{cases} x_k + s_k & \text{if } f(x_k + s_k) \leq f(x_k) \\ x_k & \text{otherwise} \end{cases} \]
- \(s_k \) is used if the decrease in the model is realized by the objective \(f(x_k + s_k) \)
Models of $f(x_k + s)$

- **linear model**
 \[m_L^k(s) = f_k + g_k^T s \]

- **quadratic model**
 \[m_Q^k(s) = f_k + g_k^T s + \frac{1}{2} s^T B_k s \]
 for some symmetric matrix B_k

Difficulties

- models may not resemble $f(x_k + s)$ when s is large
- ideally, want to choose most accurate second-order model, i.e., $B_k = H_k$
- minimizing the models may not be possible
 - linear model
 - m_L^k is unbounded below unless $g_k = 0$ (already at first-order solution)
 - quadratic model
 - m_Q^k is unbounded below if B_k is indefinite
 - m_Q^k is possibly unbounded below if B_k is only positive semi-definite

Trust-region methods overcome these difficulties by using a trust-region constraint

\[||s|| \leq \delta_k \]
for some “suitable” trust-region radius $\delta_k > 0$ and approximately solve

\[s_k = \arg\min_{s \in \mathbb{R}^n} m_k(s) \quad \text{subject to} \quad ||s|| \leq \delta_k \]

- m_k may be any “reasonable” model of $f(x_k + s)$, e.g., m_L^k and m_Q^0
- global convergence results do not depend on the norm $|| \cdot ||$ that is used
- practical performance may depend on the norm $|| \cdot ||$ used!
- for simplicity, we focus on the second-order (Newton-like) quadratic model
 \[m_k(s) = m_Q^k(s) = f_k + g_k^T s + \frac{1}{2} s^T B_k s \]
 and the ℓ_2 trust-region norm $|| \cdot || = || \cdot ||_2$
- other common trust-region norms simply add extra constants in the analysis
 - $||x||_2 \leq ||x||_1 \leq \sqrt{n}||x||_2$
 - $||x||_\infty \leq ||x||_2 \leq \sqrt{n}||x||_\infty$
 - $||x||_\infty \leq ||x||_1 \leq n||x||_\infty$
Definition 1.1 (trust-region subproblem)

The trust-region subproblem that we consider at the kth iterate is

$$\minimize_{s \in \mathbb{R}^n} m_k(s) = f_k + g_k^T s + \frac{1}{2} s^T B_k s \quad \text{subject to} \quad \|s\| \leq \delta_k$$

where B_k is a symmetric matrix and $\delta_k > 0$ is the trust-region radius.

Comments

- $B_k = H_k$ is always allowed! Not true for linesearch methods.
- if second derivatives are not available, then the symmetric rank-1 (SR1) quasi-Newton update is a very attractive option
 - may produce indefinite approximations B_k to the exact second derivative matrix H_k.
 - under certain assumptions it follows that
 $$\lim_{k \to \infty} \|B_k - H_k\| = 0$$
 so that fast convergence (generally) is recovered.
 - see quasi-Newton material discussed in the linesearch lecture slides for more details.

Algorithm 1 Almost a complete trust-region algorithm

1: Input an initial guess x_0.
2: Choose $0 < \gamma_d < 1 < \gamma_i$ and $0 < \eta_b \leq \eta_v < 1$.
3: Set $k \leftarrow 0$. Set $\delta_0 = 1$.
4: loop
5: Build the second-order model $m_k(s)$ of $f(x_k + s)$.
6: Approximately solve trust-region subproblem for s_k satisfying $m_k(s_k) \preceq m_k(0)$.
7: Set $\rho_k \leftarrow \frac{f_k - f(x_k + s_k)}{m_k(0) - m_k(s_k)} = \frac{f_k - f(x_k + s_k)}{f_k - m_k(s_k)}$.
8: if $\rho_k \geq \eta_v$, then
9: Set $x_{k+1} \leftarrow x_k + s_k$ and $\delta_{k+1} \leftarrow \gamma_i \delta_k$. \> very successful
10: else if $\rho_k \geq \eta_i$, then
11: Set $x_{k+1} \leftarrow x_k + s_k$ and $\delta_{k+1} \leftarrow \delta_k$. \> successful
12: else
13: Set $x_{k+1} \leftarrow x_k$ and $\delta_{k+1} \leftarrow \gamma_d \delta_k$. \> unsuccessful
14: end if
15: Set $k \leftarrow k + 1$.
16: end loop
We desire a very weak requirement for approximately solving the trust-region subproblem

\[\min_{s \in \mathbb{R}^n} m_k(s) \quad \text{subject to} \quad \|s\| \leq \delta_k \]

- aim to achieve as much reduction in \(m_k \) as would an iteration of steepest descent.
- leads to the Cauchy point

\[s_C^k = -\alpha_C^k g_k \]

where

\[\alpha_C^k = \arg\min_{\alpha \geq 0} m_k(\alpha g_k) \quad \text{subject to} \quad \alpha \|g_k\| \leq \delta_k \]

\[= \arg\min_{\alpha \leq \delta_k / \|g_k\|} m_k(-\alpha g_k) \]

- explicit computation of \(\alpha_C^k \) is very easy!...and coming soon.
- we then allow for any step \(s_k \) that is “just as good” as the Cauchy step, i.e., satisfies

\[m_k(s_k) \leq m_k(s_C^k) \quad \text{and} \quad \|s_k\| \leq \delta_k \]

- in practice, we hope to do far better than just the Cauchy step.

Definition 1.2 (decrease in the model)

Let \(m_k(s) = m_Q^k(s) \) be the second-order model. For any step \(s \), we define the decrease in the model \(m_k \) achieved by the step \(s \) as

\[\Delta m_k(s) \overset{\text{def}}{=} m_k(0) - m_k(s) \]

Lemma 1.3 (Achievable model decrease)

If \(m_k(s) = m_Q^k(s) \) is the second-order model and \(s_C^k \) the Cauchy point, then

\[\Delta m_k(s_C^k) \geq \frac{1}{2} \|g_k\| \min \left(\frac{\|g_k\|}{\|B_k g_k\|}, \delta_k \right) \geq 0 \]

Proof: Observe that

\[m_k(-\alpha g_k) = f_k - \alpha \|g_k\|^2 + \frac{1}{2} \alpha^2 g_k^T B_k g_k. \quad (1) \]

The result is immediate if \(g_k \neq 0 \).

Therefore, we assume for the remainder that \(g_k \neq 0 \) and consider 2 cases related to the curvature along the steepest descent direction.
Case 1: \(g^T B_k g_k \leq 0\)

In this case \(m_k(-\alpha g_k)\) is unbounded below as \(\alpha\) increases, which implies that the Cauchy point occurs on the trust-region boundary.

Equation (1), \(g^T B_k g_k \leq 0\), and \(\alpha \geq 0\) imply that

\[
m_k(-\alpha g_k) = f_k - \alpha ||g_k||^2 + \frac{1}{2} \alpha^2 g^T_k B_k g_k \leq f_k - \alpha ||g_k||^2.
\]

(2)

Since the Cauchy point lies on the boundary of the trust region, we know that

\[
\alpha^C_k = \frac{\delta_k}{||g_k||}
\]

which may be combined with (2) to give

\[
m_k(s^C_k) = m_k(-\alpha^C_k g_k) \leq f_k - \alpha^C_k ||g_k||^2 = f_k - \delta_k ||g_k||
\]

which may then be combined with the definition of \(\Delta m_k\) to conclude that

\[
\Delta m_k(s^C_k) = m_k(0) - m_k(s^C_k) = f_k - m_k(s^C_k) \geq \delta_k||g_k|| \geq \frac{1}{2} \delta_k ||g_k||.
\]

Case 2: \(g^T B_k g_k > 0\)

The minimizer of \(m_k(-\alpha g_k)\) (disregarding the trust-region constraint) satisfies

\[
\alpha^*_k \overset{\text{def}}{=} \arg \min_{\alpha \geq 0} m_k(-\alpha g_k) \equiv f_k - \alpha ||g_k||^2 + \frac{1}{2} \alpha^2 g^T_k B_k g_k
\]

(3)

so that

\[
\alpha^*_k = \frac{||g_k||^2}{g^T_k B_k g_k}
\]

We now consider to subcases.

Subcase 2a: \(\alpha^*_k \geq \frac{\delta_k}{||g_k||}\)

It must follow that \(\alpha^C_k\) lies on the boundary and, therefore, that

\[
\alpha^C_k = \frac{||g_k||^2}{g^T_k B_k g_k} \geq \frac{\delta_k}{||g_k||} = \alpha^C_k
\]

(4)

which (after rearrangement) implies that

\[
\alpha^C_k g^T_k B_k g_k \leq ||g_k||^2.
\]

(5)

It now follows from (3), (5), and (4) that

\[
\Delta m_k(s^C_k) = m_k(0) - m_k(s^C_k) = f_k - m_k(-\alpha^C_k g_k)
\]

\[
= \alpha^C_k ||g_k||^2 - \frac{1}{2} \alpha^C_k^2 g^T_k B_k g_k \geq \frac{1}{4} \alpha^C_k ||g_k||^2
\]

\[
= \frac{1}{2} ||g_k|| \delta_k = \frac{1}{2} ||g_k|| \delta_k.
\]
Subcase 2b: \(\alpha^*_k < \delta_k / \|g_k\| \)

It follows that

\[
\alpha^c_k = \alpha^*_k = \frac{\|g_k\|^2}{g_k^T B_k g_k}
\]

so that

\[
\Delta m_k(s^*_k) = m_k(0) - m_k(s^*_k) = f_k - m_k(-\alpha^*_k g_k) = \alpha^*_k \|g_k\|^2 - \frac{1}{2} \left(\alpha^*_k \right)^2 g_k^T B_k g_k
\]

\[
= \frac{\|g_k\|^4}{g_k^T B_k g_k} - \frac{1}{2} \frac{\|g_k\|^4}{g_k^T B_k g_k} = \frac{1}{2} \frac{\|g_k\|^4}{g_k^T B_k g_k} \geq \frac{1}{2} \frac{\|g_k\|^2}{\|B_k\|}
\]

where

\[
|g_k^T B_k g_k| \leq \|g_k\|^2 \|B_k\|
\]

follows from the Cauchy-Schwartz and matrix norm inequalities.

Corollary 1.4

If \(m_k(s) = m^Q_k(s) \) is the second-order model, and \(s_k \) is an improvement on the Cauchy point within the trust-region, i.e.,

\[
m_k(s_k) \leq m_k(s^*_k) \quad \text{and} \quad \|s_k\| \leq \delta_k,
\]

then

\[
\Delta m_k(s_k) \overset{\text{def}}{=} m_k(0) - m_k(s_k) \geq \frac{1}{2} \|g_k\| \min \left(\|g_k\| / \|B_k\|, \delta_k \right) \geq 0
\]

Note:

- \(\Delta m_k(s_k) \geq 0 \)
- if \(\Delta m_k(s_k) = 0 \), then \(g_k = 0 \)
- if we are not first-order optimal, i.e., \(g_k \neq 0 \), then

\[\Delta m_k(s_k) > 0\]
Algorithm 2 A general trust-region algorithm

1. Input an initial guess x_0.
2. Choose $0 < \gamma_d < 1 < \gamma_i$ and $0 < \eta_p \leq \eta_s < 1$.
3. Set $k \leftarrow 0$.
4. **loop**
5. Build the second-order model $m_k(x)$ of $f(x) + s$.
6. Find any trial step s_k that satisfies $\|s_k\| \leq \delta_k$ and $m_k(s_k) \leq m_k(s_k^*)$.
7. Set $\rho_k \leftarrow \frac{f_k - f(x_k + s_k)}{m_k(0) - m_k(s_k)} = \frac{f_k - f(x_k + s_k)}{\Delta m_k(s_k)}$.
8. if $\rho_k \geq \eta_s$, then
 - Set $x_{k+1} \leftarrow x_k + s_k$ and $\delta_{k+1} \leftarrow \gamma_i \delta_k$. ▷ very successful
9. else if $\rho_k \geq \eta_p$, then
 - Set $x_{k+1} \leftarrow x_k + s_k$ and $\delta_{k+1} \leftarrow \delta_k$. ▷ successful
10. else
 - Set $x_{k+1} \leftarrow x_k$ and $\delta_{k+1} \leftarrow \gamma_d \delta_k$. ▷ unsuccessful
11. end if
12. Set $k \leftarrow k + 1$.
13. end loop

- In practice, one should use a termination test such as used:
 $\|g_k\| \leq 10^{-6} \max (1, \|g(x_0)\|)$
- Typical values: $\eta_p = 0.1, \eta_s = 0.9, \gamma_d = 1/2, \gamma_i = 2$

Lemma 1.5 (Difference between the model and the objective)

Suppose that $f \in C^2$, and that the true and model Hessians satisfy the bounds $\|H(x)\| \leq \kappa_a$ for all x and $\|B_k\| \leq \kappa_a$ for all k and some $\kappa_a \geq 1$ and $\kappa_a \geq 0$. Then

\[|f(x_k + s_k) - m_k(s_k)| \leq \kappa_a \delta_k^2 \]

where $\kappa_d = \frac{1}{2} (\kappa_b + \kappa_a)$ for all k.

Proof:

The Mean Value Theorem implies that

\[f(x_k + s_k) = f_k + g_k^T s_k + \frac{1}{2} s_k^T H(\xi_k) s_k \]

for some $\xi_k \in [x_k, x_k + s_k]$. Thus

\[|f(x_k + s_k) - m_k(s_k)| = \frac{1}{2} |s_k^T H(\xi_k) s_k - s_k^T B_k s_k| \]

\[\leq \frac{1}{2} |s_k^T H(\xi_k) s_k| + \frac{1}{2} |s_k^T B_k s_k| \]

\[\leq \frac{1}{2} (\kappa_b + \kappa_a) |s_k|^2 \]

\[\leq \kappa_a \delta_k^2 \]

where we have used the triangle-inequality, the Cauchy-Schwartz inequality, and the fact that $\|s_k\| \leq \delta_k$. ■
Lemma 1.6 (Progress at non-optimal points)

Suppose that $f \in \mathcal{C}^2$, that the true and model Hessians satisfy the bounds $\|H_k\| \leq \kappa_h$ and $\|B_k\| \leq \kappa_b$ for all k and some $\kappa_h \geq 1$ and $\kappa_b \geq 0$, and that $\kappa_d = \frac{1}{2}(\kappa_h + \kappa_b)$.

Suppose furthermore that $g_k \neq 0$ and that $\delta_k \leq \|g_k\| \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{1 - \eta}{2\kappa_d}\right)$.

Then iteration k is very successful and

$$\delta_{k+1} \geq \delta_k$$

Proof:

By definition of κ_h and κ_b we know that

$$\|B_k\| \leq \kappa_h + \kappa_b$$

and then from (6) it follows that

$$\delta_k \leq \frac{\|g_k\|}{\kappa_h + \kappa_b} \leq \frac{\|g_k\|}{\|B_k\|}.$$

Combining this with Corollary 1.4 and the fact that $g_k \neq 0$ by assumption, yields

$$\Delta m_k(s_k) \geq \frac{1}{2}\|g_k\| \min\left(\frac{\|g_k\|}{\|B_k\|}, \delta_k\right) = \frac{1}{2}\|g_k\| \delta_k > 0.$$

From the previous slide we had

$$\Delta m_k(s_k) \geq \frac{1}{2}\|g_k\| \delta_k > 0$$

which may now be combined with the definition of ρ_k in line 7 of Algorithm 2, Lemma 1.5, and (6) to deduce that

$$|\rho_k - 1| = \frac{|f(x_k + s_k) - m_k(s_k)|}{m_k(0) - m_k(s_k)}$$

$$= \frac{|f(x_k + s_k) - m_k(s_k)|}{\Delta m_k(s_k)}$$

$$\leq 2 \frac{\kappa_d \delta_k}{\|g_k\| \delta_k}$$

$$= 2 \frac{\kappa_d \delta_k}{\|g_k\|}$$

$$\leq 1 - \eta,$$

which implies that $\rho_k \geq \eta$ and that the iteration is very successful. It now follows from line 9 of Algorithm 2 that

$$\delta_{k+1} \geq \delta_k$$

which is the desired result.
Lemma 1.7 (Radius will not shrink to zero at non-optimal points)

Suppose that \(f \in C^2 \), that the true and model Hessians satisfy the bounds \(\|H_k\| \leq \kappa_h \) and \(\|B_k\| \leq \kappa_b \) for all \(k \) and some \(\kappa_h \geq 1 \) and \(\kappa_b \geq 0 \), and that \(\kappa_d = \frac{1}{2}(\kappa_h + \kappa_b) \).

Suppose furthermore that there exists a constant \(\epsilon \) and \(k_0 \in \mathbb{N} \) such that \(\|g_k\| \geq \epsilon > 0 \) for all \(k \geq k_0 \). Then

\[
\delta_k \geq \delta_{\min} \overset{\text{def}}{=} \epsilon \gamma_d \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_d)}{2\kappa_d} \right) > 0
\]
for all \(k \geq k_1 \) for some \(k_1 \in \mathbb{N} \).

Proof:

We first observe that if there is some \(k' \geq k_0 \) such that \(\delta_{k'} \geq \epsilon \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_d)}{2\kappa_d} \right) \), then for all \(k \geq k' \) we must have \(\delta_k \geq \delta_{\min} \overset{\text{def}}{=} \epsilon \gamma_d \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_d)}{2\kappa_d} \right) \). Indeed, suppose otherwise that \(k \geq k' \) is the first iteration such that

\[
\delta_k \geq \delta_{\min} > \delta_{k+1} = \gamma_d \delta_k.
\] (7)

Dividing the previous line by \(\gamma_d \) and using the fact that \(\epsilon \leq \|g_k\| \) gives

\[
\frac{\delta_k}{\gamma_d} = \frac{\delta_{k+1}}{\gamma_d} = \epsilon \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_d)}{2\kappa_d} \right) \leq \|g_k\| \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_d)}{2\kappa_d} \right)
\]

It then follows from Lemma 1.6 that \(\delta_{k+1} \geq \delta_k \), which contradicts (7).

We now have to show that there exists some \(k' \geq k_0 \) such that

\[
\delta_{k'} \geq \epsilon \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_d)}{2\kappa_d} \right).
\]

But this is true because whenever we have an iteration such that \(\delta_{k'} < \epsilon \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_d)}{2\kappa_d} \right) \), we have a very successful iteration by Lemma 1.6, and therefore, we strictly increase the radius by the factor \(\gamma_1 > 1 \), i.e.,

\[
\delta_{k+1} = \gamma_1 \delta_k.
\]

}\]
Lemma 1.8 (Possible finite termination)

Suppose that \(f \in C^2 \), and that both the true and model Hessians remain bounded for all \(k \). Suppose furthermore that there are only finitely many very successful and successful iterations. Then \(x_k = x^* \) for all sufficiently large \(k \) and \(g(x^*) = 0 \).

Proof:

From the assumptions of this lemma, it follows that there exists some \(x^* \) such that

\[
x_{k_0 + j} = x_{k_0 + 1} = x^*
\]

for all \(j \geq 1 \), where \(k_0 \) is the index of the last successful iterate.

Since all iterations are unsuccessful for \(k \) sufficiently large, we also know that

\[
\lim_{k \to \infty} \delta_k = 0 \tag{8}
\]

If \(g(x_{k_0 + 1}) \neq 0 \), let \(\epsilon = ||g(x_{k_0 + 1})|| > 0 \). By Lemma 1.7

\[
\delta_k \geq \delta_{\min} \overset{\text{def}}{=} \epsilon \gamma d \min \left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_v)}{2 \kappa_d} \right)
\]

contradicting (8). Thus, we must conclude that

\[
g(x^*) = g(x_{k_0 + 1}) = 0
\]

which is the desired result.

Theorem 1.9 (Global convergence of some subsequence)

Suppose that

- \(f \in C^2 \)
- \(f \) and model Hessians satisfy the bounds \(\|H_k\| \leq \kappa_h \) and \(\|B_k\| \leq \kappa_b \) for all \(k \) and some \(\kappa_h \geq 1 \) and \(\kappa_b \geq 0 \)

Then one of the following must occur:

1. \textit{finite termination}, i.e., there exists some finite \(k \) such that
 \[
 g_k = 0
 \]
2. \textit{unbounded objective function}, i.e.,
 \[
 \lim_{k \to \infty} f_k = -\infty
 \]
3. \textit{convergence of a subsequence of the gradients}, i.e.,
 \[
 \lim \inf_{k \to \infty} \|g_k\| = 0
 \]

Proof:

Let \(S \) be the index set of successful and very successful iterations, i.e.,

\[
S = \{ k : x_{k+1} \leftarrow x_k + s_k \}.
\]

Lemma 1.8 implies that outcome 1 is true when \(|S| < \infty \). Therefore, for the remainder, we assume that \(|S| = \infty \) and that \(f_k \) is bounded below (otherwise outcome 2 holds).
To prove that outcome 3 must occur, we assume (to reach a contradiction) that there exists \(\epsilon > 0 \) and \(k_0 \in \mathbb{N} \) such that
\[
\|g_k\| \geq \epsilon > 0 \quad \text{for all } k \geq k_0. \tag{9}
\]

It follows from the definition of \(\mathcal{S} \), the definition of \(\rho_k \) in line 7 of Algorithm 2, Corollary 1.4, (9), and Lemma 1.7 that
\[
f_k - f_{k+1} \geq \eta \Delta m_0(s_k) \geq \frac{1}{2} \eta \epsilon \min \left[\frac{\epsilon}{\kappa_h}, \delta_{\min} \right] \overset{\text{def}}{=} \delta_x > 0 \quad \text{for all } k \in \mathcal{S} \text{ such that } k \geq k_0.
\]

Picking \(j \geq 1 \) and then summing over all \(k \in \mathcal{S} \) such that \(k \leq j \) gives
\[
f_0 - f_{j+1} = \sum_{k=0}^{j} [f_k - f_{k+1}] \geq \sum_{k \in \mathcal{S}} [f_k - f_{k+1}] \geq \sum_{k \in \mathcal{S}} \delta_x.
\]

Taking the limit as \(j \to \infty \) gives
\[
\lim_{j \to \infty} (f_0 - f_{j+1}) \geq \lim_{j \to \infty} \sum_{k \in \mathcal{S}} \delta_x = \sum_{k \in \mathcal{S}} \delta_x = \infty
\]

which implies that \(f \) is unbounded below. This contradicts our assumption and, therefore, we must conclude that (9) is false, which means that there exists a subsequence of the gradients that converges to zero, i.e.,
\[
\lim_{k \to \infty} \|g_k\| = 0.
\]

\[\square\]

Theorem 1.10 (Global convergence)

Suppose that
- \(f \in C^2 \)
- true and model Hessians satisfy the bounds \(\|H_k\| \leq \kappa_h \) and \(\|B_k\| \leq \kappa_b \) for all \(k \) and some \(\kappa_h \geq 1 \) and \(\kappa_b \geq 0 \)

Then one of the following must occur:
- **finite termination**, i.e., there exists some finite \(k \) such that \(g_k = 0 \)
- **unbounded objective function**, i.e.,
 \[
 \lim_{k \to \infty} f_k = -\infty
 \]
- **convergence of the gradients**, i.e.,
 \[
 \lim_{k \to \infty} g_k = 0
 \]

What is the difference between this theorem and the previous theorem?
- Case 3 is now a limit instead of a liminf.
Proof:
Suppose that outcome 1 and outcome 2 do not occur, i.e., that \(g_k \neq 0 \) for all \(k \geq 0 \) and \(f_k \) is bounded from below. We now wish to show that outcome 3 must occur.

For a proof by contradiction, assume that there is an \(\epsilon > 0 \) and a subsequence \(\{t_i\} \subseteq S \) such that
\[
\|g_{t_i}\| \geq 2\epsilon > 0 \quad \text{for all } i. \quad (10)
\]

On the other-hand, Theorem 1.9 implies that there exists a sequence \(\{\ell_i\} \subseteq S \) such that
\[
\|g_k\| \geq \epsilon \quad \text{for } t_i \leq k < \ell_i \quad \text{and} \quad \|g_{\ell_i}\| < \epsilon. \quad (11)
\]

We now restrict our attention to indices in the set
\[
K \overset{\text{def}}{=} \{k \in S \mid t_i \leq k < \ell_i\}.
\]

Note from (11) that
\[
\|g_k\| \geq \epsilon \quad \text{for all } k \in K. \quad (12)
\]

Figure: The subsequences in the proof of Theorem 1.10.
As in proof of Theorem 1.9, (12) implies

\[f_k - f_{k+1} \geq \eta_k \Delta m_k(s_k) \geq \frac{1}{2} \eta_k \epsilon \min \left[\frac{\epsilon}{\kappa^p}, \delta_i \right] \] for all \(k \in K \). \hspace{1cm} (13)

Since the LHS of (13) converges to 0 as \(k \to \infty \) (why?), we may conclude that

\[\delta_k \leq \frac{2}{\epsilon \eta_k} [f_k - f_{k+1}] \] for \(k \in K \) sufficiently large.

We may now use the triangle-inequality, the definition of the trust-region radius \(\delta_k \), and the previous inequality to conclude that

\[\|x_k - x_{\ell_i}\| \leq \sum_{j \neq \ell_i}^{k-1} \|x_j - x_{j+1}\| \leq \sum_{j \neq \ell_i}^{k-1} \delta_j \leq \frac{2}{\epsilon \eta_k} [f_k - f_{\ell_i}] \] for \(i \) sufficiently large. \hspace{1cm} (14)

Since the RHS of (14) converges to 0, we know that

\[\lim_{i \to \infty} \|x_k - x_{\ell_i}\| = 0. \]

Combining this with the assumed continuity of \(g \) implies that

\[\lim_{i \to \infty} \|g_{\ell_i} - g_{\ell_i}\| = 0. \]

However, this is a contradiction since \(\|g_{\ell_i} - g_{\ell_i}\| \geq \epsilon \) by definition of \(\{\ell_i\} \) and \(\{\ell_i\} \).

Convergence rates for trust region methods

- **Global Convergence:** With some tweaks to the algorithm, one can prove \(O((\frac{1}{\epsilon})^2) \)
 (and even \(O((\frac{1}{\epsilon})^{3/2}) \)) convergence to \(\epsilon \)-stationary points. See the following short paper for a recent, clean analysis:

- **Local Convergence:** If \(B_k \) is taken to be the Hessian and the model is solved to give steps that are better than the Cauchy step and are asymptotically similar to the Newton steps, then one can prove superlinear (and with stronger assumptions, even quadratic) local convergence. See Theorem 4.9 in Nocedal-Wright.
Recall:
For the quadratic model $m_k(s) = f_k + g_k^T s + \frac{1}{2}s^T B_k s$, the trust-region subproblem is

$$
\begin{align*}
\text{minimize} & \quad m_k(s) \\
\text{subject to} & \quad \|s\| \leq \delta_k
\end{align*}
$$

and minimizers of this model are also minimizers of

$$
\begin{align*}
\text{minimize} & \quad g_k^T s + \frac{1}{2}s^T B_k s \\
\text{subject to} & \quad \|s\| \leq \delta_k
\end{align*}
$$

Question: Which norm should we use?
Answer: Popular choices are the infinity norm and the two norm.

The effect of different norms with small δ_k

The choice of norm determines the behavior of s_k as $\delta_k \to 0$.

If $\|s\| \ll 1$ then

$$ f_k + g_k^T s + \frac{1}{2}s^T B_k s \approx f_k + g_k^T s $$

so that for $\delta_k \ll 1$ we have

$$
\begin{align*}
\text{minimize} & \quad m_k(s) = f_k + g_k^T s + \frac{1}{2}s^T B_k s \\
\text{subject to} & \quad \|s\| \leq \delta_k
\end{align*} \approx \begin{align*}
\text{minimize} & \quad f_k + g_k^T s \\
\text{subject to} & \quad \|s\| \leq \delta_k
\end{align*}
$$

\implies solution s_k approaches the steepest-descent direction of length δ_k as $\delta_k \to 0$.

\implies $s_k \to 0$ in the direction of the steepest-descent direction.

Examples:

- **the two-norm**
 \[s_k \to -\frac{\delta_k}{\|g_k\|_2} g_k \text{ as } \delta_k \to 0 \]

- **the infinity norm**
 \[s_k \to -\delta_k \hat{e} \text{ with } \hat{e} = \text{sign}(g_j(x_k)) \text{ as } \delta_k \to 0 \]
For the infinity norm, the subproblem is

\[
\min_{x \in \mathbb{R}^n} \quad f_k + g_k^T s + \frac{1}{2} s^T B_k s \\
\text{subject to} \quad -\delta_k e \leq s \leq \delta_k e
\]

where \(e \in \mathbb{R}^n \) is a vector of all ones.

- a quadratic program (QP) and possibly nonconvex.
- local solutions may be computed using bound-constrained optimization algorithms.
- finding the **global** minimizer is NP-hard, i.e., it is a **very** hard problem!
Example 2.1 (minimizer inside the trust-region)

Consider
\[\min_s m(s) = f + g^T s + \frac{1}{2} s^T B s \quad \text{subject to} \quad \|s\|_\infty \leq 4 \]

with
\[f = 0, \quad g = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \]

The unique global minimizer
\[s^* = \begin{pmatrix} -2 \\ -2 \end{pmatrix} \]

lies inside the trust region with \(m(s^*) = -6 \)

Figure: Plot associated with Example 2.1.
Example 2.2 (minimizer on the trust-region)

Consider

$$\min_s m(s) = f + g^T s + \frac{1}{2} s^T B s$$

subject to \(\|s\|_\infty \leq 4\)

with

$$f = 0, \quad g = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

The model \(m(s)\) is unbounded below and

$$s^N = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

is the step to the saddle point of \(m(s)\).

- \(g^T s^N = 4 \implies s^N\) is not a descent direction for \(f\) (or \(m\)).
- The unique global minimizer lies on the boundary of the trust region.
- There are two local solutions.

\[\text{Notes} \]

\[\text{Figure: Plot associated with Example 2.2.} \]
For the two-norm, the subproblem has the form

\[
\begin{align*}
\text{minimize} & \quad m_k(s) = f_k + g_k^T s + \frac{1}{2} s^T B_k s \\
\text{subject to} & \quad \|s\|_2 \leq \delta_k
\end{align*}
\]

This is a nonlinearly constrained optimization problem.

- amazingly, there are efficient algorithms for computing the global minimizer
- we will focus on this two-norm trust-region subproblem
Example 2.3 (minimizer inside the trust-region)

Consider
\[\min_s \ m(s) = f + g^T s + \frac{1}{2}s^T B s \] subject to \(\|s\|_2 \leq 4 \)

with
\[f = 0, \quad g = \frac{2}{4} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \]

The unique \textbf{global minimizer} is the Newton step
\[s^* = \begin{pmatrix} -2 \\ -2 \end{pmatrix} \]

and since
\[\|s^*\|_2 = 2\sqrt{2} \]

lies inside the trust region with \(m(s^*) = -6 \).

\textbf{Newton direction}
\[\|d\|_2 \leq 4 \]

\textbf{Figure:} Plot associated with Example 2.3.
Example 2.4 (minimizer on the trust-region)

Consider

$$\min \ m(s) = f + g^T s + \frac{1}{2} s^T B s \quad \text{subject to} \quad \|s\|_2 \leq 4$$

with

$$f = 0, \quad g = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

The unique global minimizer

$$s^* = \begin{pmatrix} -0.49902 \\ -3.96875 \end{pmatrix}$$

lies on the boundary of the trust region with

$$m(s^*) = -32.49962.$$
Observation:
The trust-region constraint
\[\|s\| \leq \delta \]
effects both the length and direction of the trial direction.

Consider the following trust-region subproblem
\[
\begin{align*}
\minimize_{s \in \mathbb{R}^n} & \quad m(s) = f + g^T s + \frac{1}{2} s^T Bs \\
\text{subject to} & \quad \|s\|_2 \leq \delta
\end{align*}
\]

- \(f, g,\) and \(B\) are fixed
- given a value of \(\delta\), let \(s(\delta)\) denote the global minimizer (for simplicity assume it is unique)
- \(s(\delta)\) for \(\delta \geq 0\) traces out the trust-region solution trajectory
Goal: given a vector \(g \) and a symmetric (possibly indefinite) matrix \(B \), find the global minimizer \(s^* \) to the problem

\[
\min_{s \in \mathbb{R}^n} m(s) \equiv f + s^T g + \frac{1}{2} s^T B s \quad \text{subject to} \quad \|s\|_2 \leq \delta
\]

i.e., find a vector \(s^* \) that satisfies

\[
\|s^*\|_2 \leq \delta \quad \text{and} \quad m(s^*) \leq m(s) \quad \text{for all} \quad \|s\|_2 \leq \delta.
\]

- "exact" solution implies Newton-like method
- Cauchy step \(s^C \) implies a steepest-descent-like method
- truncated CG (to be discussed later) lies somewhere in between

Observations:
- to prove global convergence of the trust-region method, we only require an approximate step \(s_A \) that satisfies
 \[
 m(s_A) \leq m(s^C) \quad \text{and} \quad \|s_A\|_2 \leq \delta
 \]
 since this implies that
 \[
 \Delta m(s_A) \geq \Delta m(s^C) \quad \text{(we proved convergence)}
 \]
- it is also sufficient to compute an approximate solution \(s_A \) that satisfies
 \[
 \Delta m(s_A) \geq \gamma \Delta m(s^*) \quad \text{and} \quad \|s_A\|_2 \leq \delta \quad \text{for some} \quad \gamma \in (0, 1)
 \]
 since this implies that
 \[
 \Delta m(s_A) \geq \gamma \Delta m(s^*) = \gamma (m(0) - m(s^*) \geq \gamma (m(0) - m(s^C)) = \gamma \Delta m(s^C)
 \]

Observation:
When the trust-region solution satisfies \(\|s^*\|_2 = \delta \), then \(s^* \) is orthogonal to the level curve of \(m(s) \) that runs through \(s^* \)
- in fact, \(s^* \) and \(-\nabla m(s^*) \) point in the same direction
- there exists \(\lambda^* \geq 0 \) such that

\[
\lambda^* s^* = -\nabla m(s^*) \quad \text{which is equivalent to} \quad (B + \lambda^* I)s^* = -g
\]
From the previous slide, we know that when the trust-region constraint is “active” at the solution s^*, then there exists some $\lambda_* \geq 0$ such that

$$(B + \lambda_* I)s^* = -g$$ \hspace{1cm} (15)$$

Another observation:

The step s^* that satisfies (15) is also a solution to the unconstrained minimization problem

$$\min_{s \in \mathbb{R}^n} f + g^T s + \frac{1}{2} s^T (B + \lambda_* I) s$$

for the unknown constant $\lambda_* \geq 0$ such that $(B + \lambda_* I) \succeq 0$.

- global minimizer s^* is unique if $(B + \lambda_* I) \succ 0$
- need to find λ_*

Theorem 2.5 (Characterization of the 2-norm trust-region solution)

A vector s^* is a global minimizer of

$$\min_{s \in \mathbb{R}^n} m(s) \equiv f + s^T g + \frac{1}{2} s^T B s \text{ subject to } \|s\|_2 \leq \delta$$

if and only if $\|s^*\|_2 \leq \delta$ and there exists a scalar λ_* such that

- $\lambda_* \geq 0$
- $(B + \lambda_* I)s^* = -g$
- $B + \lambda_* I$ is positive semi-definite
- $\lambda_* (\|s^*\|_2 - \delta) = 0$.

Moreover, if $B + \lambda_* I$ is positive definite, then s^* is unique.

- the “shifted” Hessian $B + \lambda_* I$ is positive semi-definite, which ensures that s^* is not an ascent direction. Is it guaranteed to be a descent direction?
- if $\|s^*\|_2 < \delta$, then $\lambda_* = 0$ and $B s^* = -g$
 so that s^* is the Newton direction! (if $B = H$)
- if $\lambda_* > 0$, then $\|s_*\|_2 = \delta$ so that the global minimizer lies on the trust-region boundary.
- λ_* is actually a Lagrange multiplier for the problem

$$\min_{s \in \mathbb{R}^n} m(s) \text{ subject to } \frac{1}{2} \|s\|_2^2 \leq \frac{1}{2} \delta^2$$

but this requires optimality conditions for constrained optimization (EN.553.762)
Example 2.6 (local versus global minimizer)

Consider

$$\min_d m(d) = f + g^T d + \frac{1}{2} d^T Bd \text{ subject to } \|d\|_2 \leq 4$$

where

$$f = 0, \quad g = \begin{pmatrix} \frac{1}{4} \end{pmatrix}, \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}.$$

In this case

$$(B + \lambda_* I) s_* = -g \text{ with } \lambda_* = 3.00787$$

and that

$$B + \lambda_* I = \begin{pmatrix} 4.00787 & 0 \\ 0 & 1.00787 \end{pmatrix} \text{ is positive definite}$$

There is a local minimizer \hat{s} on the boundary of the trust region that satisfies

$$\hat{s} = \begin{pmatrix} -1.0173 \\ 3.8684 \end{pmatrix} \text{ and } m(\hat{s}) = -1.0082.$$

In this case

$$(B + \tilde{\lambda} I) \hat{s} = -g \text{ with } \tilde{\lambda} = 0.9660$$

but

$$B + \tilde{\lambda} I = \begin{pmatrix} 1.9660 & 0 \\ 0 & -1.0340 \end{pmatrix} \text{ which is not positive definite}$$

and implies that \hat{s} and $\tilde{\lambda}$ do not satisfy the optimality conditions.

Figure: Plot associated with Example 2.6.
minimize $m(s) = f + g^T s + \frac{1}{2} s^T B s$ subject to $\|s\|_2 \leq \delta$

Three cases:

1. B positive-semidefinite and some vector s satisfies $Bs = -g$ and $\|s\|_2 \leq \delta$
 - $s^* = s$ and $\lambda^* = 0$

2. B positive-semidefinite and there does not exist a vector s that satisfies $Bs = -g$ and $\|s\|_2 \leq \delta$
 - $(B + \lambda_* I)s^* = -g$ and $\|s^*\|_2 = \delta$
 - nonlinear (quadratic) system in s and λ

3. B is not positive semi-definite (covers the indefinite case)
 - $(B + \lambda_* I)s^* = -g$ and $\|s^*\|_2 = \delta$
 - nonlinear (quadratic) system in s and λ

We will focus on cases 2 and 3.

Therefore, we only consider the case that $\|s^*\|_2 = \delta$.

Based on the characterization of a global minimizer as given by Theorem 2.5, we may describe our goal.

Goal: first version

Find a scalar $\lambda_* \geq 0$ and a vector s^* such that

$B + \lambda_* I \succeq 0$, $(B + \lambda_* I)s^* = -g$, and $\|s^*\|_2 = \delta$

Consider the spectral decomposition $B = VAV^T$, where

$V = (v_1 \ v_2 \ \cdots \ v_n)$ and $A = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$

with $Bv_j = \lambda_j v_j$ for $j = 1, 2, \ldots, n$ and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. It follows that

$B + \lambda I = VAV^T + \lambda I = V(A + \lambda I)V^T$

- $B + \lambda I \succeq 0$ if and only if $\lambda \geq -\lambda_n$
- $B + \lambda I \succ 0$ if $\lambda > -\lambda_n$

Goal: second version

Find a scalar $\lambda_* \geq \max(0, -\lambda_n)$ and a vector s^* such that

$(B + \lambda_* I)s^* = -g$ and $\|s^*\|_2 = \delta$
Definition 2.7
For $\lambda > -\lambda_n$ let $s(\lambda)$ denote the unique solution to the linear system

$$(B + \lambda I)s = -g$$

so that

$$(B + \lambda I)s(\lambda) = -g$$

If we define

$$\psi(\lambda) \overset{\text{def}}{=} \|s(\lambda)\|_2$$

then we are searching for a $\lambda_* \geq \max(0, -\lambda_n)$ such that

$$\psi(\lambda_*) = \delta$$

If $B + \lambda I$ is nonsingular, then

$$(B + \lambda I)^{-1} = V(\Lambda + \lambda I)^{-1}V^T$$

so that

$$s(\lambda) = -(B + \lambda I)^{-1}g = -\sum_{i=1}^n \frac{v_i^T g}{\lambda_i + \lambda} v_i$$

Taking norms and using the orthogonality of the columns of V, gives

$$\|s(\lambda)\|_2^2 = \|(B + \lambda I)^{-1}g\|_2^2 = \sum_{i=1}^n \left(\frac{v_i^T g}{\lambda_i + \lambda}\right)^2$$

which implies that $\psi(\lambda) = \|s(\lambda)\|_2$ has poles at $\lambda = -\lambda_i$ if $v_i^T g \neq 0$.

Example 2.8 (poles of $\psi(\lambda) = \|s(\lambda)\|_2$)
Consider

$$\min_s f + g^T s + \frac{1}{2}s^T B s \quad \text{subject to} \quad \|s\|_2 \leq 4$$

with

$$f = 0, \quad g = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

It is easy to see that B has one positive and one negative eigenvalue, and that

$$s(\lambda) = \begin{pmatrix} -2/(\lambda + 1) \\ -4/(\lambda - 2) \end{pmatrix}$$

so that

$$\|s(\lambda)\|_2^2 = \frac{4}{(\lambda + 1)^2} + \frac{16}{(\lambda - 2)^2}.$$

It follows that $\psi(\lambda) = \|s(\lambda)\|_2$ has two poles at

$$\lambda = -\lambda_1 = -1 \quad \text{and} \quad \lambda = -\lambda_2 = 2.$$
For this example it is clear that for any \(\delta > 0 \) there is a \(\lambda_* > 2 \) satisfying \(\psi(\lambda_*) = \delta \) so that \(s(\lambda_*) \) solves the trust-region subproblem.

CONVEX EXAMPLE

\[
B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}
\]

\[
\Delta^2 = 1.151
\]

\[
g = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
\]
NONCONVEX EXAMPLE

\[B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} \]

\[g = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \]

\(\psi(\lambda) \)

THE “HARD” CASE

\[B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} \]

\[g = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \]

\(\psi(\lambda) \)

\(\Delta^2 = 0.0903 \)

- \(g^T v_3 = 0 \) where \(v_3 = (1 \quad 0 \quad 0)^T \) so that there is no pole at \(\lambda = -\lambda_3 = 1 \).
- There are solutions for \(\delta \leq 0.0903 \).
- There are no obvious solutions for \(\delta > 0.0903 \) (of course there is one!)
Summary of the "hard case"

For indefinite B, the hard case occurs when g is orthogonal to the eigenvector v_n associated with the most negative eigenvalue λ_n.

- OK if radius is "small enough"
- No "obvious" solution when radius is "big", but in fact a solution is of the form

$$s_{\text{lim}} + \sigma v_n$$

where

$$s_{\text{lim}} = \lim_{\lambda \downarrow \lambda_n} s(\lambda)$$

and σ is chosen to satisfy

$$\|s_{\text{lim}} + \sigma v_n\|_2 = \delta$$

Question: How do we actually solve $\|s(\lambda)\|_2 = \delta$?

Answer: We don't!...but instead solve the secular equation

$$\phi(\lambda) \overset{\text{def}}{=} \frac{1}{\|s(\lambda)\|_2} - \frac{1}{\delta} = 0$$

using Newton's Method (safeguarded).

Properties of ϕ:

- no poles
- smallest at eigenvalues (except in hard case!)
- analytic function implies ideal for Newton
- usually nearly linear close to λ^*
- globally convergent (ultimately quadratic rate except in hard case)
- need to safeguard Newton's Method to deal with the hard case and when the solution is in the strict interior of the trust-region
The secular equation example

\[
\begin{align*}
\min -\frac{1}{4}s_1 + \frac{1}{4}s_2^2 + \frac{1}{2}s_1 + s_2 \\
\text{subject to } \|s\|_2 \leq 4
\end{align*}
\]

The Newton correction \(\Delta \lambda\) at \(\lambda\) is given by

\[
\Delta \lambda = -\phi(\lambda)/\phi'(\lambda).
\]

If we differentiate

\[
\phi(\lambda) = \frac{1}{\|s(\lambda)\|_2} - \frac{1}{\delta} = \frac{1}{[s(\lambda)^Ts(\lambda)]^{\frac{1}{2}}} - \frac{1}{\delta}
\]

we obtain

\[
\phi'(\lambda) = -\frac{s(\lambda)^T\nabla s(\lambda)}{\|s(\lambda)\|_2^{\frac{3}{2}}} = -\frac{s(\lambda)^T\nabla s(\lambda)}{\|s(\lambda)\|_2^{\frac{1}{2}}}
\]

Differentiating the defining equation \((B + \lambda I)s(\lambda) = -g\) with respect to \(\lambda\) yields

\[(B + \lambda I)\nabla s(\lambda) + s(\lambda) = 0 \implies \nabla s(\lambda) = -(B + \lambda I)^{-1}s(\lambda).
\]

Notice that, rather than \(\nabla s(\lambda)\), merely

\[-s(\lambda)^T\nabla s(\lambda) = s(\lambda)^T(B + \lambda I)^{-1}s(\lambda)
\]

is required to compute \(\phi'(\lambda)\). Given the Cholesky factorization

\[B + \lambda I = L(\lambda)L(\lambda)^T\]

we can see that

\[s(\lambda)^T(B + \lambda I)^{-1}s(\lambda) = s(\lambda)^T L(\lambda)^{-T}L(\lambda)^{-1}s(\lambda) = [L(\lambda)^{-1}s(\lambda)]^T [L(\lambda)^{-1}s(\lambda)] = \|w(\lambda)\|^2_2\]

where \(L(\lambda)w(\lambda) = s(\lambda)\).
Algorithm 3 Newton’s Method for solving the secular equation

1: Input symmetric matrix B, vector g, and trust-region radius $\delta > 0$.
2: Choose $\lambda > -\lambda_n$.
3: loop
4: Compute the Cholesky factorization $LL^T = B + \lambda I$.
5: Solve $LL^Ts = -g$.
6: Solve $Lw = s$.
7: Set $\lambda \leftarrow \lambda + \Delta \lambda$ where
 \[
 \Delta \lambda = \left(\frac{\|s\|_2 - \delta}{\delta} \right) \left(\frac{\|s\|_2^2}{\|w\|_2^2} \right)
 \]
8: end loop

- Should always include a reasonable stopping criteria.
- Each iteration requires 1 factorization and 3 triangular-system solves.
- Choosing an initial $\lambda > -\lambda_n$ is not trivial.
- Method needs to be safeguarded to ensure convergence. See Chapter 7 of “Trust-Region Methods” by Conn, Gould and Toint for detailed discussion and analysis.

Complexity results for Trust Region Subproblem

The problem

\[
\minimize_{s \in \mathbb{R}^n} m(s) \equiv f + s^Tg + \frac{1}{2}s^T Bs \quad \text{subject to} \quad \|s\|_2 \leq \delta
\]

can be solved in polynomial time. More precisely, in the late 1980s and early 1990s, several researchers (Karmarkar, Ye, Vavasis, Zippel) showed the problem can be solved with at most $O(n^3 \log \left(\frac{1}{\epsilon} \right))$ arithmetic operations. Ye (1992) improved this to $O(n^3 \log \log \left(\frac{1}{\epsilon} \right))$ arithmetic operations, using interior point methods.

More generally, the problem

\[
\minimize_{s \in \mathbb{R}^n} \frac{1}{2}s^T Q_1 s + s^T b_1 \quad \text{subject to} \quad \frac{1}{2}s^T Q_2 s + s^T b_2 \leq \gamma
\]

can be solved in polynomial time, i.e., $poly(n, \log \left(\frac{1}{\epsilon} \right))$. Uses a concept called the S-Lemma and Semidefinite Optimization/Programming (SDP).
Computing an exact solution to the trust-region subproblem is an iterative process:
- each iteration requires a matrix factorization
- each iteration requires three triangular solves
- relatively expensive

Is it worth it?
- even an exact solution may be rejected if the trust-region radius is too large
- the steepest descent direction (very cheap to compute) makes good progress during early iterations
- recall why we used inexact searches in linesearch methods
- factorizations may not even be possible for very large problems
- we desire methods that find reasonable approximate solutions to the trust-region subproblem at a modest cost

Basic idea: approximate the trust-region solution trajectory by a piecewise linear path
- define the dogleg step s^{DL} as the minimizer of $m(s)$ along the path
 \[
 s(\alpha) = \begin{cases}
 \alpha s^C & \text{for } 0 \leq \alpha \leq 1 \\
 s^C + (\alpha - 1)(s^N - s^C) & \text{for } 1 \leq \alpha \leq 2
 \end{cases}
 \]
 where s^C is the Cauchy point and s^N is the unconstrained Newton step
- it follows that $m(s^{DL}) \leq m(s)$ so that $\Delta m(s^{DL}) \geq \Delta m(s^F)$, which ensures that the trust-region method is globally convergent
- care must be taken when B is singular
We want to use the conjugate gradient (CG) method as the basis of an algorithm for computing an approximate solution \(p_{CG} \) to

\[
\min_{p \in \mathbb{R}^n} \quad m(p) = f + p^Tg + \frac{1}{2}p^T \mathbf{B} p \quad \text{subject to} \quad \|p\|_2 \leq \delta \quad (16)
\]

- \(\mathbf{B} \) may be indefinite (even singular) and we must ensure that

\[
\Delta m(p_{CG}) \geq \Delta m(s^C)
\]

where \(s^C \) is the Cauchy point for problem (16)

Algorithm 4: Steihaug Method based on Conjugate Gradients

1. Input symmetric matrix \(\mathbf{B} \in \mathbb{R}^{n \times n} \) and vector \(g \).
2. Choose stopping tolerance \(\tau_{\text{stop}} > 0 \).
3. Set \(p_0 = 0, r_0 \leftarrow g, s_0 \leftarrow -g, \) and \(k \leftarrow 0 \).
4. while \(\|r_k\| > \tau_{\text{stop}} \|r_0\| \) do
5. if \(s_k^T \mathbf{B} s_k > 0 \) then
6. Set \(\alpha_k \leftarrow (r_k^T r_k) / (s_k^T \mathbf{B} s_k) \).
7. else
8. Set \(p_{k+1} \leftarrow p_k + \tau s_k \), where \(\tau \) is the positive root of \(\|p_k + \tau s_k\|_2 = \delta \).
9. return \(p_{CG} := p_{k+1} \)
10. end if
11. if \(\|p_k + \alpha s_k\|_2 < \delta \) then
12. Set \(p_{k+1} \leftarrow p_k + \alpha s_k \).
13. else
14. Set \(r_{k+1} \leftarrow r_k + \alpha s_k \), where \(\alpha \) is the positive root of \(\|r_k + \tau s_k\|_2 = \delta \).
15. return \(p_{CG} := p_{k+1} \)
16. end if
17. Set \(r_{k+1} \leftarrow r_k + \alpha \mathbf{B} s_k \).
18. Set \(\beta_{k+1} \leftarrow (r_{k+1}^T r_{k+1}) / (r_k^T r_k) \).
19. Set \(s_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} s_k \).
20. Set \(k \leftarrow k + 1 \).
21. end while
22. return \(p_{CG} := p_k \)
Crucially, it is easily seen that

\[m(p^{CG}) \leq m(s^c) \quad \text{and} \quad \|p^{CG}\|_2 \leq \delta \]

which implies that

\[\Delta m(p^{CG}) \geq \Delta m(s^c) \]

so that (under standard assumptions) the trust-region algorithm with trial step \(p^{CG} \) converges to a first-order solution.

Fine, but how good is the trial step \(p_{CG} \)?

Theorem 2.9 (How good is the Steihaug truncated CG step?)

Suppose that the Steihaug truncated conjugate gradient method given by Algorithm 4 is applied to minimize \(m(s) \) and that \(B \) is positive definite. Then the CG step \(p^{CG} \) and the global minimizer \(s^* \) satisfy the bound

\[\Delta m(p^{CG}) \geq \frac{1}{2} \Delta m(s^*) \]

In the non-convex case, the approximate solution \(p^{CG} \) may be very poor

- can we do better?

Idea: minimize \(m(s) \) subject to the trust-region constraint over a sequence of expanding subspaces (analogous to CG method)

How do we solve the problem over a subspace?

- instead of the basis of \(B \)-conjugate directions as in CG, use an equivalent *Lanczos orthonormal basis*
- Gram-Schmidt applied to CG (Krylov) basis

\[S^i \overset{\text{def}}{=} [s_0 \ s_1 \ . \ . \ . \ s_{i-1}] \quad \text{for} \ i = 1, 2, \ldots n \]

gives orthonormal basis

\[Q^i \overset{\text{def}}{=} [q_0 \ q_1 \ . \ . \ . \ q_{i-1}] \quad \text{for} \ i = 1, 2, \ldots n \]

such that \(\text{span}(S^i) = \text{span}(Q^i) \)

- Subspace \(Q^i = \{ s : s = Q^i y \ \text{for some} \ y \in \mathbb{R}^i \} \)
- basis matrix \(Q^i \) satisfies

\[Q^i^T Q^i = I \quad \text{and} \quad Q^i^T B Q^i = T^i \]

where \(T^i \) is tridiagonal and \(Q^i^T g = \|g\|_2 e_1 \)

- the basis matrix \(Q^i \) is trivial (cheap) to generate from the CG basis matrix \(S^i \)
Outline of the generalized Lanczos trust-region (GLTR) method

The problem of interest
Find an approximate solution of the trust-region subproblem

\[
\min_{s \in \mathbb{R}^n} m(s) \text{ subject to } \|s\|_2 \leq \delta
\]

- solve a sequence of problems of the form
 \[
 s^i = \arg\min_{s \in Q^i} m(s) \text{ subject to } \|s\|_2 \leq \delta
 \]
 where \(Q^i = \{ Q^i y : y \in \mathbb{R}^i \} \)
 the solution \(s^i \) satisfies \(s^i = Q^i y^i \), where
 \[
 y^i = \arg\min_{y \in \mathbb{R}^i} \|g\|_2 s^T y + \frac{1}{2} y^T T^i y \text{ subject to } \|y\|_2 \leq \delta
 \]
- \(T^i \) is tri-diagonal and has a very sparse factorization so that the global minimizer can be computed efficiently using the earlier secular equation approach
- can exploit the structure and use the solution from one subproblem to initialize the solution process for solving the next subproblem
- until the trust-region boundary is reached, it is conjugate gradients......but changes after the trust-region boundary is reached