Optimality conditions for unconstrained optimization

Daniel P. Robinson
Department of Applied Mathematics and Statistics
Johns Hopkins University

September 3, 2019

Outline

1 The problem and definitions
2 First-order optimality conditions
3 Second-order optimality conditions
The basic problem

\[\text{minimize } f(x) \quad x \in \mathbb{R}^n \]

Definition (global minimizer)
The vector \(x^* \) is a **global minimizer** if

\[f(x^*) \leq f(x) \quad \text{for all } x \in \mathbb{R}^n \]

Definition (local minimizer)
The vector \(x^* \) is a **local minimizer** if there exists \(\varepsilon > 0 \) such that

\[f(x^*) \leq f(x) \quad \text{for all } x \in B(x^*, \varepsilon) \]

where \(B(x^*, \varepsilon) := \{ x \in \mathbb{R}^n : \| x - x^* \| \leq \varepsilon \} \)

Definition (strict local minimizer)
The vector \(x^* \) is a **strict local minimizer** if there exists \(\varepsilon > 0 \) such that

\[f(x^*) < f(x) \quad \text{for all } x \neq x^* \text{ such that } x \in B(x^*, \varepsilon) \]

Definition (isolated local minimizer)
The vector \(x^* \) is an **isolated local minimizer** if there exists \(\varepsilon > 0 \) such that \(x^* \) is the only local minimizer in \(B(x^*, \varepsilon) \)

- If \(x^* \) is an isolated local minimizer then \(x^* \) is a strict local minimizer

One-dimensional example

![Graph of a function with local and global minimizers]

- If we assume that \(f \) is continuously differentiable, then we can derive verifiable **local optimality conditions** for determining whether a point is a local minimizer
- We rarely can verify that a point is a **global** minimizer

Theorem

If \(x^* \) is a local minimizer of a **convex** function \(f \) defined on \(\mathbb{R}^n \), then \(x^* \) is a global minimizer of \(f \)
We are interested in optimality conditions because they

- provide a means of guaranteeing when a candidate solution \(x \) is indeed optimal (sufficient conditions)
- indicate when a point is not optimal (necessary conditions)
- guide in the design of algorithms since

\[
\text{lack of optimality} \iff \text{indication of improvement}
\]

Recall the following notation

- \(g(x) = \nabla f(x) \)
- \(H(x) = \nabla^2 f(x) \)

Theorem (First-order necessary condition)

Suppose that \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is continuously differentiable. If \(x^* \) is a local minimizer of \(f \), then

\[
g(x^*) = 0
\]

Proof:

By definition of local minimizer, there exists \(\epsilon > 0 \) such that \(f(x^*) \leq f(x) \) for all \(x \in B(x^*, \epsilon) \). Suppose to the contrary that \(g(x^*) \neq 0 \). Set \(s = -\frac{g(x^*)}{\|g(x^*)\|} \) and consider the function \(\phi(\lambda) = f(x + \lambda s) \).

\[
\phi'(0) = g(x^*)^T s = -\|g(x^*)\| < 0.
\]

Since \(f \) is continuously differentiable, so is \(\phi \), i.e., \(\phi' \) is continuous. Thus, there exists \(0 < \delta < \epsilon \) such that \(\phi'(\xi) < 0 \) for all \(\xi \in (-\delta, \delta) \). By the Mean Value Theorem,

\[
\phi(\delta) = \phi(0) + \phi'(\xi)(\delta - 0)
\]

for some \(\xi \in (0, \delta) \). Since \(\phi'(\xi) < 0 \), we have

\[
f(x + \delta s) = \phi(\delta) < \phi(0) = f(x^*)
\]

and \(\|\delta s\| = \delta \|s\| = \delta < \epsilon \), contradicting the hypothesis that \(x^* \) is a local minimizer.
if \(g(x^*) \neq 0 \), then \(x^* \) is not a local minimizer
- we can limit our search to points \(x^* \) such that \(g(x^*) = 0 \)
- a stationary point is any point \(x \) that satisfies \(g(x) = 0 \)
- IMPORTANT: if \(g(x^*) = 0 \), it does not imply that we have found a local minimizer

In the proof of the previous theorem, the direction \(-g(x^*) \neq 0\) was a descent direction.

Definition (descent direction)

We say that the direction \(s \) is a descent direction for the continuously differentiable function \(f \) at the point \(x \) if

\[
g(x) T \tilde{s} < 0
\]

Note: when the directional derivative of \(f \) at \(x \) in the direction \(d \) exists, then it equals \(g(x) T \tilde{s} \), i.e.,

\[
f'(x; s) \overset{def}{=} \lim_{t \to 0} \frac{f(x + ts) - f(x)}{t} = g(x) T \tilde{s}
\]

Question: Why do we call them descent directions?

Answer: We can use the Mean Value Theorem based argument in the proof of the first order necessary condition to show that there exists \(\bar{\alpha} > 0 \) such that

\[
f(x + \alpha s) < f(x) \quad \text{for all} \quad 0 < \alpha < \bar{\alpha}.
\]
Theorem (Second-order necessary conditions)

Suppose that \(f : \mathbb{R}^n \to \mathbb{R} \) is twice continuously differentiable. If \(x^* \) is a local minimizer of \(f \), then \(g(x^*) = 0 \) and \(H(x^*) \) is positive semi-definite, i.e.,

\[
s^T H(x^*) s \geq 0 \quad \text{for all } s \in \mathbb{R}^n
\]

Proof:

By definition of local minimizer, there exists \(\varepsilon > 0 \) such that \(f(x^*) \leq f(x) \) for all \(x \in B(x^*, \varepsilon) \). We know from the previous theorem that \(g(x^*) = 0 \). Suppose that \(s^T H(x^*) s < 0 \) for some \(s \in \mathbb{R}^n \) with \(||s|| = 1 \). Consider the function \(\phi(\lambda) = f(x + \lambda s) \).

Then,

\[
\phi'(0) = g(x^*)^T s = 0, \quad \phi''(0) = s^T H(x^*) s < 0.
\]

Since \(f \) is twice continuously differentiable, so is \(\phi \), i.e., \(\phi'' \) is continuous. Thus, there exists \(0 < \delta < \varepsilon \) such that \(\phi''(\xi) < 0 \) for all \(\xi \in (-\delta, \delta) \). By the Mean Value Theorem,

\[
\phi(\delta) = \phi(0) + \phi'(0)(\delta - 0) + \phi''(\xi)(\delta - 0)^2
\]

for some \(\xi \in (0, \delta) \). Since \(\phi'(0) = 0 \) and \(\phi''(\xi) < 0 \), we have

\[
f(x + \delta s) = \phi(\delta) < \phi(0) = f(x^*)
\]

and \(||\delta s|| = \delta ||s|| = \delta < \varepsilon \), contradicting the hypothesis that \(x^* \) is a local minimizer.

Note: these conditions are not sufficient for being a local minimizer

- \(f(x) = x^2 \implies x = 0 \) is a saddle point
- \(f(x) = -x^4 \implies x = 0 \) is a maximizer

Theorem (Second-order sufficient conditions)

If \(f : \mathbb{R}^n \to \mathbb{R} \) is twice continuously differentiable, the vector \(x^* \) satisfies \(g(x^*) = 0 \), and the matrix \(H(x^*) \) is positive definite, i.e.,

\[
s^T H(x^*) s > 0 \quad \text{for all } s \neq 0
\]

then \(x^* \) is a strict local minimizer of \(f \).

Proof:

Continuity implies that \(H(x) \) is positive definite for all \(x \) in an open ball \(B(x^*, \varepsilon) \) for some \(\varepsilon \). For any \(s \neq 0 \) satisfying

\[
x^* + s \in B(x^*, \varepsilon)
\]

we may use the fact that \(g(x^*) = 0 \) and the (higher dimensional) Mean Value Theorem to conclude that there exists \(z \) between \(x^* \) and \(x^* + s \) such that

\[
f(x^* + s) = f(x^*) + g(x^*)^T s + \frac{1}{2} s^T H(z) s
\]

\[
= f(x^*) + \frac{1}{2} s^T H(z) s
\]

\[
> f(x^*),
\]

which implies that \(x^* \) is a strict local minimizer.
In the previous theorem, the quantity $s^2H(x)s$ was important.

<table>
<thead>
<tr>
<th>Definition (direction of positive curvature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>We say that the direction d for a twice-continuously differentiable function f is a direction of positive curvature at the point x if $d^2H(x)d > 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (direction of negative curvature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>We say that the direction d for a twice-continuously differentiable function f is a direction of negative curvature at the point x if $d^2H(x)d < 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (direction of zero curvature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>We say that the direction d for a twice-continuously differentiable function f is a direction of zero curvature at the point x if $d^2H(x)d = 0$</td>
</tr>
</tbody>
</table>

Note: the quantity $d^2H(x)d$ provides second-order curvature information at the point x along the direction d