Background and basics

Daniel P. Robinson
Department of Applied Mathematics and Statistics
Johns Hopkins University

September 1, 2020

Outline

1 Computer arithmetic
 • Floating-point (real) numbers
 • Floating-point (real) arithmetic

2 Linear systems, norms, and condition numbers
 • Review and motivation
 • Norms
 • Condition number of a linear system
 • Accuracy analysis

3 Some coding tips

4 Useful calculus facts and approximations
Floating-point (real) numbers

Modern computers store real numbers as

\[x = \pm \left(d_0 + \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \cdots + \frac{d_{p-1}}{\beta^{p-1}} \right) \beta^E \]

(4.362781 \times 10^{-08})

- **base:** \(\beta \) (e.g., 2)
- **precision:** \(p \) (e.g., 24 (SP), 53 (DP))
- **exponent:** \(E \in [L, U] \) (e.g., \([-126, 127]\) (SP), \([-1022, 1023]\) (DP))
- \(d_i \in [0, \beta - 1] \) for \(i = 0, \ldots, p - 1 \)
- the floating-point system is completely characterized by the four integers \(\beta, p, L, \) and \(U \)
- **mantissa:** \(d_0d_1\ldots d_{p-1} \)
- **fraction:** \(d_1 \ldots d_{p-1} \)
- floating-point system is **normalized** if \(d_0 \) is always nonzero unless the number represented is zero
- we will only consider normalized floating-point systems

Example (Floating-point system)

\(\beta = 10, \ p = 4, \ L = -99, \) and \(U = 99 \)

- some numbers
 - \(1 = 1.000 \times 10^{00} \)
 - \(34.67 = 3.467 \times 10^{01} \)
 - \(0.0346 = 3.460 \times 10^{-02} \)
- smallest positive number: \(1.000 \times 10^{-99} \) (underflow level)
- largest number: \(9.999 \times 10^{99} \) (overflow level)
Facts about floating-point systems

- It is finite, i.e., not all real numbers can be stored.
- Machine numbers are those real numbers that may be exactly represented.
- Total number of normalized floating-point numbers is
 \[2(\beta - 1)\beta^{-1}(U - L + 1) + 1\]

- Smallest positive number: \(UFL = \beta^L\) (underflow level)
 - numbers smaller than \(UFL\) stored as zero
 - often not serious, because zero is a good approximation

- Largest number: \(OFL = \beta^{U+1}(1 - \beta^{-p})\) (overflow level)
 - numbers larger than \(OFL\) may not be stored
 - serious problem, compilers typically terminate

Rounding

When a real number \(x\) is not exactly representable, it is approximated by a “nearby” floating-point number \(\hat{x}(x)\). This process is called **rounding** and the error that is introduced is called **rounding error**.

- Common rounding strategies
 - chopping: \(\hat{x}(x)\) is obtained by truncating the expansion of \(x\) after \(d_{p-1}\). Also called round-to-zero.
 - round-to-nearest: \(\hat{x}(x)\) is the closest floating-point number to \(x\). In case of a tie, use the floating-point number whose last stored digit is even. Also called round-to-even.

- We will assume round-to-nearest since it is the most accurate and the default rounding rule on machines that abide by the IEEE standards

Question: How bad can the rounding error be?

Answer: Involves the concept of machine precision
Example (Motivation of machine precision)
Consider the following numbers x and their nearest neighbor to the “right” x_r (using $\beta = 10$ and $p = 4$)

\[
\begin{align*}
 x &= 1.000 \times 10^{00} \\
 x_r &= 1.001 \times 10^{00} \\
 x &= 1.000 \times 10^{06} \\
 x_r &= 1.001 \times 10^{06}
\end{align*}
\]

- Distance is 10^{-03}
- Relative distance of both is 10^{-03}
- Largest error in a number that is stored as 1 is $\frac{1}{2}10^{-03} = \frac{1}{2}\beta^{-p}$

Machine precision assuming round-to-nearest

$\epsilon_{\text{mach}} \overset{\text{def}}{=} \frac{1}{2}\beta^{1-p}$

bounds the relative error in storing a floating-point number:

\[
\frac{|\text{fl}(x) - x|}{|x|} \leq \epsilon_{\text{mach}}
\]

Definition (Machine precision)
The following three definitions are (roughly) equivalent. The machine precision is equal to

- the smallest number ϵ such that $\text{fl}(1 + \epsilon) > 1$
- the largest number ϵ such that $\text{fl}(1 + \epsilon) = 1$
- half the distance between 1 and the nearest floating-point number

Note: also called machine epsilon and unit-round-off.

Example (Understanding the definition of ϵ_{mach})
Using round-to-nearest, $p = 4$, and $\beta = 10$, we have

\[
\begin{align*}
 1.000 + 0.0005 &= 1.0005 \overset{\text{comp}}{=} 1.000 \\
 1.000 + 0.00051 &= 1.00051 \overset{\text{comp}}{=} 1.001
\end{align*}
\]

$\Rightarrow \epsilon_{\text{mach}} = 0.0005 = 5 \times 10^{-04} = \frac{1}{2} \times 10^{-03} = \frac{1}{2}\beta^{1-p}$

Comment: Generally, $0 < \text{UFL} < \epsilon_{\text{mach}} < \text{OFL}$
Exceptional values in the floating-point system

IEEE standard allows for the following exceptional values:

- **Inf**: represents “infinity” and results from dividing a finite number by zero
- **NaN**: stands for “not a number” and results from undefined or not well-defined operations (e.g., \(0/0\), \(0 \times \infty\), \(\infty/\infty\))

The basic idea (simplified)

- **Multiplication of two floating-point numbers (similar for division)**
 - exponents are summed and mantissas multiplied
 - product of two \(p\) digit mantissas is generally \(2p\) digits (must round)
 - example:
 \[
 x \times y = (4.452 \times 10^{62}) \times (6.436 \times 10^{-61}) = 28.653072 \times 10^{61} \\
 = 2.8653072 \times 10^{62} \approx 2.865 \times 10^{62}
 \]
- **Addition of two floating-point numbers (similar for subtraction)**
 - shift so that exponents are the same, add, then re-normalize
 - example:
 \[
 x + y = (4.452 \times 10^{62}) + (6.436 \times 10^{-61}) \\
 = 4.452 \times 10^{62} + 0.006436 \times 10^{62} \\
 = 4.458436 \times 10^{62} \approx 4.458 \times 10^{62}
 \]
- generally, trailing digits of smaller (in magnitude) number are lost

\[x = 4.452 \times 10^{62} \text{ and } y = 6.436 \times 10^{-61}\]
Example (Motivate concept of catastrophic cancellation)
Consider computing for some a and b the following:

$$z = 333.75b^6 + a^2(11a^2b^2 - b^5 - 121b^4 - 2)$$
$$x = 5.5b^8$$
$$y = z + x + a/(2b)$$

If $a = 77617$ and $b = 33096$ then

$$z = -7917111340668961361101134701524942850$$
$$x = 7917111340668961361101134701524942848$$
$$z + x = -2 \implies y = -2 + a/(2b) = -0.827396\ldots$$

But, if precision $p \leq 35$, then

$$z + x \text{ comp} = 0 \implies y \text{ comp} (a/2b) = 1.1726\ldots$$

Not even the correct sign!

The problem of interest
Given data input $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, solve the linear system

$Ax = b$

- Let a_{ij} denote the element of A in row i and column j
- Can consider questions of existence and uniqueness of solutions
- Conditioning (sensitivity of the solution) solution is $x = A^{-1}b$

Example (System of equations)

$$\begin{align*}
 x_1 + 3x_2 &= 5 \\
 2x_1 + 7x_2 &= 3
\end{align*}$$

where

$$n = 2, \quad A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \text{and} \quad b = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

Question: Is the solution unique?
Definition (Nonsingular case)
A square matrix $A \in \mathbb{R}^{n \times n}$ is said to be nonsingular if any of the following equivalent conditions are satisfied:

- the inverse matrix A^{-1} exists
- $\det(A) \neq 0$
- $\text{rank}(A) = n$
- $Az = 0 \implies z = 0$
- $z \neq 0 \implies Az \neq 0$

Result
If A is nonsingular, then $Ax = b$ has a unique solution for any b

Singular case
If the square matrix $A \in \mathbb{R}^{n \times n}$ is singular (inverse does not exist), then

- if $b \in \text{span}(A)$, then infinitely many solutions exist
- if $b \notin \text{span}(A)$, then no solutions exist

Example (Singular A)

$$
\begin{pmatrix}
1 & 2 \\
3 & 6
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2
\end{pmatrix}
$$

- $\det(A) = 1 \cdot 6 - 3 \cdot 2 = 0 \implies A$ is singular
- $b = \begin{pmatrix}4 \\ 8\end{pmatrix} \implies x = \begin{pmatrix}1 \\ 1\end{pmatrix}$, or ... infinitely many solutions
- $b = \begin{pmatrix}1 \\ 1\end{pmatrix} \implies$ no solutions
“Known” material for square A
- general A: solve $Ax = b$ using $A = LU$ factorization (Gaussian elimination)
- positive-definite A: solve $Ax = b$ using $A = LL^T$ factorization (Cholesky factorization)

New material for square A
- Conditioning: how sensitive is the solution x to the system $Ax = b$ to the input data A and b?
- To understand conditioning, we will introduce the condition number of a matrix A
 \[
 \text{cond}(A) \overset{\text{def}}{=} \|A\| \|A^{-1}\|
 \]
- This requires us to understand matrix norms $\|A\|$.
- Which requires us to understand vector norms (next section)

<Matlab demo 1>

Vector norms

There are many vector norms
- $\|x\|_2 = \sqrt{x_1^2 + x_2^2 \ldots x_n^2}$ (2-norm)
- $\|x\|_1 = |x_1| + |x_2| \ldots |x_n| = \sum_{i=1}^{n} |x_i|$ (1-norm)
- $\|x\|_\infty = \max_{1 \leq i \leq n} |x_i|$ (∞-norm)

Example (Some vector norms)

$x = \begin{pmatrix} -12 \\ 3 \\ 4 \end{pmatrix}$
- $\|x\|_2 = 13$
- $\|x\|_1 = 19$
- $\|x\|_\infty = 12$
Sometimes a specific norm may be better than another

Suppose we have accumulated data as the result of a carefully designed experiment, and then obtained a model of the data.

If we store the error of each data point in the vector x then

- $x = (10^{-43} \ 10^{-42} \ \ldots \ 3 \ \ldots \ 10^{-43})^T$
- $\|x\|_\infty = 3$ because of the outlier
- Maybe better to use $\|x\|_2/n$?

The geometry of vector norms

Some results

The following hold:

- $\|x\|_\infty \leq \|x\|_2 \leq \|x\|_1$
- $\|x\|_1 \leq \sqrt{n} \|x\|_2$
- $\|x\|_2 \leq \sqrt{n} \|x\|_\infty$
- $\|x\|_1 \leq n \|x\|_\infty$
Definition (Vector norm)
A vector norm is any real-valued function $\| \cdot \|$ of a vector that satisfies the following properties:

1. If $x \neq 0$ then $\|x\| > 0$
2. $\|\alpha x\| = |\alpha|\|x\|$ for any $\alpha \in \mathbb{R}$
3. $\|x + y\| \leq \|x\| + \|y\|$ (triangle-inequality)

Using the above properties, it may be shown that

- $\|x\| = 0$ if and only if $x = 0$
- $\|x\| - \|y\| \leq \|x - y\|$ (reverse triangle-inequality)

We have already seen some examples

- $\|x\| \overset{\text{def}}{=} \|x\|_2$
- $\|x\| \overset{\text{def}}{=} \|x\|_1$
- $\|x\| \overset{\text{def}}{=} \|x\|_\infty$

Definition (Induced matrix norm)
Given a vector norm $\|x\|$, we define the induced matrix norm as

$$\|A\| \overset{\text{def}}{=} \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \max_{\|x\|=1} \|Ax\|$$

- Measures the maximum amount of "elongation" resulting from multiplication by A
- It can be shown that
 - $\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{ij}|$ (maximum absolute column sum)
 - $\|A\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$ (maximum absolute row sum)

Example (Matrix norms)

$$A = \begin{pmatrix} -7 & 4 & 3 & 1 \\ 8 & -5 & 6 & 0 \\ -1 & -3 & 7 & 4 \\ 5 & 0 & 0 & -5 \end{pmatrix}$$

- $\|A\|_1 = 21$ and $\|A\|_\infty = 19$
Definition (Matrix norm)

A matrix norm is any real-valued function $\| \cdot \|$ of a matrix that satisfies the following properties:

1. if $A \neq 0$ then $\|A\| > 0$
2. $\|\alpha A\| = |\alpha|\|A\|$ for any $\alpha \in \mathbb{R}$
3. $\|A + B\| \leq \|A\| + \|B\|$ (triangle-inequality)

Using the above properties, it may be shown that

- $\|A\| = 0$ if and only if $A = 0$
- $\|A\| - \|B\| \leq \|A - B\| \leq \|A\| - \|B\|$ (reverse triangle-inequality)

We have already seen some examples

- $\|A\| \overset{\text{def}}{=} \|A\|_1$
- $\|A\| \overset{\text{def}}{=} \|A\|_\infty$

Induced matrix norms (not all norms) are consistent, i.e., satisfy

- $\|AB\| \leq \|A\| \|B\|$ for any x
- $\|Ax\| \leq \|A\| \|x\|$ for any x

Definition (condition number)

We define the condition number of a square matrix A as

$$\text{cond}(A) = \begin{cases}
\|A\| \|A^{-1}\| & \text{if } A \text{ is nonsingular} \\
\infty & \text{if } A \text{ is singular}
\end{cases}$$

- large condition number $\implies A$ is nearly singular
- geometric interpretation: the condition number is the ratio of the largest stretching over the smallest shrinking caused by multiplication by A
- the residual $r = b - Ax$ is not a reliable measure of accuracy
- for well-conditioned problems, the relative residual is reliable:

$$\frac{\|b - Ax\|}{\|x\| \|A\|}$$

- fact: backward stable algorithms produce small relative residuals

<Matlab demo 2>
\[\text{cond}(A) = \begin{cases} \|A\| \|A^{-1}\| & \text{if } A \text{ is nonsingular} \\ \infty & \text{if } A \text{ is singular} \end{cases} \]

Properties of the condition number

If the condition number is defined by any induced matrix norm, then
- \(\text{cond}(I) = 1 \)
- \(\text{cond}(A) \geq 1 \)
- \(\text{cond}(\alpha A) = \text{cond}(A) \) for all \(\alpha \neq 0 \)
- If \(D \) is a diagonal matrix, then
 \[\text{cond}(D) = \frac{\max_{1 \leq i \leq n} |d_{ii}|}{\min_{1 \leq i \leq n} |d_{ii}|} \]

Example (Condition number of a diagonal matrix)

\[D = \begin{pmatrix} 50 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -0.01 \end{pmatrix} \implies \text{cond}(D) = 5000 \]

Computing the condition number

- Computing \(\|A\| \) is computationally cheap
- Computing \(A^{-1} \) is very computationally expensive
- It is more expensive to compute \(A^{-1} \) than it is to solve \(Ax = b \)
- Some software cheaply estimates \(\text{cond}(A) \) while solving \(Ax = b \)
 - LINPACK \(\rightarrow \) sgeco
 - LAPACK \(\rightarrow \) sgecon
 - NAG \(\rightarrow \) f07agf
 - Matlab \(\rightarrow \) condest
Accuracy analysis

Suppose we are given A, b and a perturbed right-hand-side

$$\hat{b} = b + \Delta b.$$

Let x and \hat{x} satisfy

$$Ax = b \implies \|b\| = \|Ax\| \leq \|A\|\|x\| \quad \text{(consistency)} \quad (4)$$

Define

$$\Delta x \equiv \hat{x} - x \quad A \Delta x = A(\hat{x} - x) = A\hat{x} - Ax = \hat{b} - b = \Delta b \implies \Delta x = A^{-1} \Delta b$$

Using the previous equality, the consistency property, and (4) we have

$$\implies \frac{\|\Delta x\|}{\|x\|} = \frac{\|A^{-1} \Delta b\|}{\|x\|} \leq \frac{\|A\|\|A^{-1}\|\|\Delta b\|}{\|b\|}$$

This is precisely

$$\frac{\|\hat{x} - x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\hat{b} - b\|}{\|b\|}$$

With a little more work, we obtain the following perturbation result

Theorem (Error bound for linear systems)

If A is nonsingular, $Ax = b$, and $A\hat{x} = \hat{b}$, then

$$\frac{1}{\operatorname{cond}(A)} \frac{\|\hat{b} - b\|}{\|b\|} \leq \frac{\|\hat{x} - x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\hat{b} - b\|}{\|b\|}$$

A similar analysis shows the following.

Theorem (Error bound for linear systems)

If A is nonsingular, $Ax = b$, and $A\hat{x} = b$, then

$$\frac{\|\hat{x} - x\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1 - \operatorname{cond}(A) \frac{\|A - \hat{A}\|}{\|A\|}} \frac{\|\hat{A} - A\|}{\|A\|}$$

provided $\|\hat{A} - A\| \leq 1/\|A^{-1}\|$.

- Similar result holds when A and b are perturbed simultaneously.
- What does this mean in terms of computer representation?
What does this mean in terms of computer representation?

1. We give the computer \(A \) and \(b \) and want to find \(x \) such that \(Ax = b \). We assume that \(A \) is exactly representable, but that \(b \) is not.

2. Define \(\hat{b} = \Phi(b) \) so that \(\hat{b} \) satisfies
 \[
 \frac{\|\hat{b} - b\|}{\|b\|} = \frac{\|\Phi(b) - b\|}{\|b\|} \leq \epsilon_{\text{mach}}
 \]

3. We solve \(A\hat{x} = \hat{b} \)

4. From result on previous slide we know that
 \[
 \frac{\|\hat{x} - x\|}{\|x\|} \leq \text{cond}(A) \frac{\|\hat{b} - b\|}{\|b\|} \leq \text{cond}(A) \epsilon_{\text{mach}}
 \]

<Matlab demo 3>

Theorem (Geometric interpretation of the condition number)

\[
\frac{1}{\text{cond}(A)} = \inf \left\{ \frac{\|A - B\|}{\|A\|} : B \text{ is not invertible} \right\}
\]

Thus, the reciprocal of the condition number measures the (normalized) distance to the closest singular matrix.
If computer arithmetic was exact, writing programs would be “easy”
- prove that an algorithm works
- implement the algorithm verbatim
- watch it solve every problem that it ever encounters!

Computer arithmetic is not exact
- writing good code is a combination of
 ▶ science
 ▶ attention to detail
 ▶ organization
 ▶ experience
 ▶ black art
- You will likely run into numerical issues while writing Matlab code for this course, but with some tricks/techniques you can avoid unnecessary trouble

Solving linear systems

- In Matlab, you can compute the inverse of a matrix A with
 $$A_{inv} = \text{inv}(A);$$

- DO NOT DO THIS!
- When Matlab computes A^{-1} it
 ▶ is creating numerical error
 ▶ is very costly
- It is much better to solve the linear system $Ax = b$ by typing
 $$x = A\backslash b;$$
 so that Matlab may use a stable, fast, direct method (i.e., a factorization of A)
- Due to ill-conditioning, however, do not always assume that the results are accurate!
Termination tests

- Numerical algorithms require a termination test to know when to stop
- **Example:** for finding x such that $F(x) = 0$, we may choose to stop when
 $$\|F(x_k)\| \leq \varepsilon$$
 for some $\varepsilon \geq 0$

 where $\{x_k\}_{k \geq 0}$ are the iterates generated by the algorithm
- If you choose $\varepsilon = 0$, your code will typically **never** stop in practice
- If you choose $\varepsilon = 10^{-15}$, your code will **rarely** stop in practice
- A good choice is something like
 $$\varepsilon = 10^{-6}\|F(x_0)\|$$
 so that the algorithm terminates when the relative tolerance
 $$\frac{\|F(x_k)\|}{\|F(x_0)\|} \leq 10^{-6}$$
 is satisfied
- Why not stop when $\|x_k - x_{k+1}\|$ is small?

Arithmetic anomalies

- In your code, you may make a decision that depends on verifying whether two quantities are equal
 - **DO NOT DO THIS!**
- **Example:** if you verify the equality $3 = (\sqrt{3})^2$ at a Matlab prompt by typing
 $$3 == \text{sqrt}(3)^2$$
 it will return 0, i.e., false!
- A better strategy is something similar to
 $$(3 <= \text{sqrt}(3)^2 + 1e-12) \& (3 >= \text{sqrt}(3)^2 - 1e-12)$$
 which returns 1, i.e., true
- You may also find (e.g., in line-search methods that will be discussed later) that for three numbers $a \approx b$ and $c \approx 0$, the expression
 $$a \leq b - c$$
 may yield false, but the expression
 $$a - b \leq -c$$
 yields true! (the second is desirable in the context of line-search methods)
Other sources

- Dividing large numbers by small numbers
- Catastrophic cancellation
- Matrix-matrix, matrix-vector, or vector-vector operations
- Computing eigenvalues of a matrix \(A \) numerically
- Computing solutions of linear systems numerically
- Finding a zero of a function numerically
- Poor problem scaling, e.g., finding \(x = (x_1, x_2) \) satisfying

\[
\frac{x_1^2 - x_2}{4x_1 - 5x_2} = 0 \quad \text{versus} \quad \frac{10^4(x_1^2 - x_2)}{10^6(4x_1 - 5x_2)} = 0
\]

- Practically anything!

Notes

- For optimization theory and developing algorithms, we require tools for describing how function values change with their inputs.
- When derivatives exist, we use results from Calculus; e.g., gradients and Hessians

Definition

If \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is differentiable, the **gradient** of \(f \) at \(x \) is

\[
\nabla f(x) \overset{\text{def}}{=} \begin{pmatrix}
\frac{\partial f(x)}{\partial x_1} \\
\vdots \\
\frac{\partial f(x)}{\partial x_n}
\end{pmatrix}
\]

Definition

If \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is twice differentiable, the **Hessian** of \(f \) at \(x \) is

\[
\nabla^2 f(x) \overset{\text{def}}{=} \begin{pmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\。
\vdots & \ddots & \vdots \\.
\frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2}
\end{pmatrix}
\]
Theorem (One-dimensional slices of multivariate functions)

Let \(f : \mathbb{R}^n \to \mathbb{R} \). Consider any \(x, s \in \mathbb{R}^n \) and define \(\phi : \mathbb{R} \to \mathbb{R} \) as

\[
\phi(\lambda) = f(x + \lambda s).
\]

- If \(f \) is differentiable, then so is \(\phi \) and for any \(\bar{\lambda} \in \mathbb{R} \),
 \[
 \phi'(\bar{\lambda}) = \nabla f(x + \bar{\lambda}s)^T s.
 \]
- If \(f \) is twice differentiable, then so is \(\phi \) and for any \(\bar{\lambda} \in \mathbb{R} \),
 \[
 \phi''(\bar{\lambda}) = s^T \nabla^2 f(x + \bar{\lambda}s)s.
 \]

Theorem (One-dimensional Mean Value Theorems)

Let \(\phi : \mathbb{R} \to \mathbb{R} \).

- Suppose \(\phi \) is differentiable. Then for any \(a < b \in \mathbb{R} \), there exists \(c \in (a, b) \) such that
 \[
 \phi(b) = \phi(a) + \phi'(c)(b - a).
 \]
- Suppose \(\phi \) is twice differentiable. Then for any \(a < b \in \mathbb{R} \), there exists \(c \in (a, b) \) such that
 \[
 \phi(b) = \phi(a) + \phi'(a)(b - a) + \frac{1}{2}\phi''(c)(b - a)^2.
 \]

Theorem (Higher-dimensional Mean Value Theorem)

Let \(S \) be an open subset of \(\mathbb{R}^n \) and let \(f : S \to \mathbb{R} \).

- Suppose \(f \) is differentiable throughout \(S \). Then for any \(x \in S \) and \(s \neq 0 \in \mathbb{R}^n \), such that the interval \([x, x + s] \in S \), there exists \(z \in (x, x + s) \) such that
 \[
 f(x + s) = f(x) + \nabla f(z)^T s.
 \]
- Suppose \(f \) is twice differentiable throughout \(S \). Then for any \(x \in S \) and \(s \neq 0 \in \mathbb{R}^n \), such that the interval \([x, x + s] \in S \), there exists \(z \in (x, x + s) \) such that
 \[
 f(x + s) = f(x) + g(x)^T s + \frac{1}{2}s^T H(z)s
 \]
Definition (Lipschitz continuity)

Suppose that

- \mathcal{X} and \mathcal{Y} open sets
- $F : \mathcal{X} \rightarrow \mathcal{Y}$
- $\| \cdot \|_\mathcal{X}$ and $\| \cdot \|_\mathcal{Y}$ are norms

Then

- F is Lipschitz continuous at $x \in \mathcal{X}$ if $\exists \gamma(x) \in \mathbb{R}$ such that

$$\|F(z) - F(x)\|_\mathcal{Y} \leq \gamma(x) \|z - x\|_\mathcal{X}$$

for all $z \in \mathcal{X}$.

- F is Lipschitz continuous throughout/in \mathcal{X} if $\exists \gamma \in \mathbb{R}$ such that

$$\|F(z) - F(x)\|_\mathcal{Y} \leq \gamma \|z - x\|_\mathcal{X}$$

for all x and $z \in \mathcal{X}$.

Theorem (Taylor approximations for real-valued functions)

Let S be an open subset of \mathbb{R}^n, $s \in \mathbb{R}^n$, and suppose that $f : S \rightarrow \mathbb{R}$ is continuously differentiable throughout S and $g = \nabla f$ is Lipschitz continuous at x with Lipschitz constant $\gamma_f(x)$ for some appropriate vector norm. It follows that if the segment $[x, x + s] \subset S$, then

$$|f(x + s) - m^f(x + s)| \leq \frac{1}{2} \gamma_f(x) \|s\|^2,$$

where

$$m^f(x + s) = f(x) + g(x)^T s.$$

If in addition, f is twice continuously differentiable throughout S and $H = \nabla^2 f$ is Lipschitz continuous at x, with Lipschitz constant $\gamma_H(x)$, then

$$|f(x + s) - m^\theta(x + s)| \leq \frac{1}{4} \gamma_H(x) \|s\|^4,$$

where

$$m^\theta(x + s) = f(x) + g(x)^T s + \frac{1}{2} s^T H(x) s.$$
Definition (Differential of vector-valued function)

If \(F : \mathbb{R}^n \to \mathbb{R}^m \) is differentiable, the Jacobian of \(F \) at \(x \) is

\[
J(x) := \nabla F(x) \overset{\text{def}}{=} \begin{pmatrix}
\frac{\partial F_1(x)}{\partial x_1} & \cdots & \frac{\partial F_1(x)}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_m(x)}{\partial x_1} & \cdots & \frac{\partial F_m(x)}{\partial x_n}
\end{pmatrix}
\]

where \(F_i(x), i = 1, \ldots, m \) is the \(i \)-th component of \(F(x) \).

Theorem (Taylor approximation for vector-valued functions)

Let \(S \) be an open subset of \(\mathbb{R}^n \), \(s \in \mathbb{R}^n \), and suppose that \(F : S \to \mathbb{R}^m \) is continuously differentiable throughout \(S \) and that \(\nabla F(x) \) is Lipschitz continuous at \(x \) with Lipschitz constant \(\gamma^F(x) \) for some appropriate vector norm and its induced matrix norm. It follows that if the segment \([x, x + s] \subset S \), then

\[
\|F(x + s) - M^F(x + s)\|_{\mathbb{R}^m} \leq \frac{1}{2} \gamma^F(x) \|s\|^2_{\mathbb{R}^n},
\]

where

\[
M^F(x + s) = F(x) + \nabla F(x)s.
\]