Introduction to Nonlinear Optimization I

Daniel P. Robinson
Department of Applied Mathematics and Statistics
Johns Hopkins University

September 1, 2020

Outline

1. Topics that I expect you to already know
2. Introduction to nonlinear unconstrained optimization
 - Smooth problem example
 - Structured non-smooth example
3. Summary

Calculus
- derivatives
- gradients
- Jacobians
- Hessians
- Taylor’s expansion

Real Analysis
- sequences (subsequences, boundedness, accumulation points, etc.)
- continuity and limits

Linear Algebra
- vectors and vector norms
- matrices and matrix norms
- matrix properties, e.g., symmetric, positive (semi) definite, (non)singular, etc.
- determinants, eigenvalues, and eigenvectors
- matrix factorizations

The basic problem
\[
\begin{align*}
\text{minimize}_{x \in \mathbb{R}^n} f(x) \\
\text{objective function } f : \mathbb{R}^n \rightarrow \mathbb{R} \\
\text{may maximize } f \text{ by minimizing the function } \hat{f}(x) := -f(x)
\end{align*}
\]

Definition (global minimizer)
The vector \(x^* \) is a global minimizer if
\[
f(x^*) \leq f(x) \text{ for all } x \in \mathbb{R}^n
\]

Definition (local minimizer)
The vector \(x^* \) is a local minimizer if
\[
f(x^*) \leq f(x) \text{ for all } x \text{ satisfying } ||x - x^*|| \leq \varepsilon \text{ for some } \varepsilon > 0
\]

Definition (strict local minimizer)
The vector \(x^* \) is a strict local minimizer if
\[
f(x^*) < f(x) \text{ for all } x \neq x^* \text{ satisfying } ||x - x^*||_1 \leq \varepsilon \text{ for some } \varepsilon > 0
\]
The basic problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in \mathbb{R}^n
\end{align*}
\]

Notation
- gradient \(g(x) := \nabla f(x) \in \mathbb{R}^n \)
- Hessian \(H(x) := \nabla^2 f(x) \in \mathbb{R}^{n \times n} \)

- we will always assume that \(f \) is a continuous function
- we will study when
 - \(f \) is once or twice continuously differentiable (smooth optimization)
 - \(f \) is non-differentiable but with structure (structured non-smooth optimization)
 - \(n \) is small, medium, and large
- we will not study
 - derivatives of \(f \) are too expensive or unavailable (derivative free optimization)
 - integer programming, i.e., optimization where (some) variables are required to take integer values (Combinatorial Optimization EN.553.766)
 - computing a global minimizer (Introduction to Convexity EN.553.465, Convex Optimization EN.553.765, Stochastic Search and Optimization EN.553.763)

Speech recognition (multi-class regression)

- Number of classes \(N_c \approx 100 \) (basic units of sound)
- Number of features \(N_f \approx 10 \) thousand (coefficients in the mathematical representation of a digital sample of sound)
- Number of parameters \(\approx 1 \) million (# classes \(\times \) # features)
- Number of data points \(N_d \approx 10 \) billion and growing (size of data)
- Compute \(w^* \) as solution to

\[
\begin{align*}
\text{minimize} & \quad f(w) + \lambda \|w\|_1, \quad (\lambda > 0 \text{ is a sparsity parameter}) \\
\text{where} & \quad f(w) := -\sum_{i=1}^{N_d} \log \left(\frac{\exp(w^T x_i)}{\sum_{j=1}^{N_c} \exp(w_j^T x_i)} \right)
\end{align*}
\]

- Predicted probability of new input \(\hat{x} \) being in class \(k \) is

\[
p(y = k|\hat{x}) = \frac{\exp(w_k^T \hat{x})}{\sum_{j=1}^{N_c} \exp(w_j^T \hat{x})}
\]

- Major challenges
 - \(f(w) + \lambda \|w\|_1 \) is nonlinear
 - \(\|w\|_1 \) is non-smooth when \(w_i = 0 \) for some \(i \) (structured non-smooth)
 - \(\nabla f(w) \) is very expensive! Must sum up 10 billion gradients

Data fitting example

January 1801: asteroid Ceres is discovered, but in Autumn 1801 it “disappeared”. Gauss considers an elliptic orbit instead of a circular orbit

- circular orbit \(x^2 + y^2 = r^2 \) for some \(r > 0 \)
- elliptic (conic section) orbit \(\alpha x^2 + \beta y^2 + \gamma xy = 1 \) for some \(\alpha, \beta, \gamma \)

How did he do it?
- used a collection of \(N \) previous location measurements \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)
- found the “best” ellipse by computing

\[
(\alpha^*, \beta^*, \gamma^*) = \arg \min_{\alpha, \beta, \gamma} \sum_{i=1}^{N} (\alpha x_i^2 + \beta y_i^2 + \gamma x_i y_i - 1)^2
\]

- looked for Ceres along the ellipse defined by

\[
\alpha^* x^2 + \beta^* y^2 + \gamma^* xy = 1
\]

- the objective function \(f(\alpha, \beta, \gamma) = \sum_{i=1}^{N} (\alpha x_i^2 + \beta y_i^2 + \gamma x_i y_i - 1)^2 \) is nonlinear and twice continuously differentiable

Unconstrained optimization problems may
- be convex or nonconvex, but typically nonlinear.
- have an objective function that is twice continuously differentiable, once continuously differentiable, structurally non-smooth, non-smooth
- contain continuous and/or discrete variables
- vary in size
 - small scale \(\approx 1 - 100 \) variables
 - medium scale \(\approx 10^3 \) variables
 - large scale \(\approx 10^4 - 10^6 \) variables
 - very large scale \(\geq 10^6 \) variables
 - infinite dimensional

We may be interested in
- a local solution or global solution
- the minimum value of the objective function and/or the minimizer
- finding multiple distinct minimizers
- the lowest value of the objective given time constraints or limits on the number of allowed evaluations of the objective function