Introduction to Nonlinear Optimization I

Daniel P. Robinson
Department of Applied Mathematics and Statistics
Johns Hopkins University

September 3, 2019

Outline

1. Topics that I expect you to already know

2. Introduction to nonlinear unconstrained optimization
 - Smooth problem example
 - Structured non-smooth example

3. Summary

Calculus
- derivatives
- gradients
- Jacobians
- Hessians
- Taylor’s expansion

Real Analysis
- sequences (subsequences, boundedness, accumulation points, etc.)
- continuity and limits

Linear Algebra
- vectors and vector norms
- matrices and matrix norms
- matrix properties, e.g., symmetric, positive (semi) definite, (non)singular, etc.
- determinants, eigenvalues, and eigenvectors
- matrix factorizations

The basic problem
\[\minimize_{x \in \mathbb{R}^n} f(x) \]
- objective function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \)
- may maximize \(f \) by minimizing the function \(\tilde{f}(x) := -f(x) \)

Definition (global minimizer)
The vector \(x^* \) is a global minimizer if \(f(x^*) \leq f(x) \) for all \(x \in \mathbb{R}^n \)

Definition (local minimizer)
The vector \(x^* \) is a local minimizer if \(f(x^*) \leq f(x) \) for all \(x \) satisfying \(\|x - x^*\| \leq \varepsilon \) for some \(\varepsilon > 0 \)

Definition (strict local minimizer)
The vector \(x^* \) is a strict local minimizer if \(f(x^*) < f(x) \) for all \(x \neq x^* \) satisfying \(\|x - x^*\|_2 \leq \varepsilon \) for some \(\varepsilon > 0 \)
Speech recognition (multi-class regression)

Data fitting example

January 1801: asteroid Ceres is discovered, but in Autumn 1801 it “disappeared”. Gauss considers an elliptic orbit instead of a circular orbit

- $x^2 + y^2 = r^2$ for some $r > 0$
- $\alpha x^2 + \beta y^2 + \gamma xy = 1$ for some α, β, γ

How did he do it?

- used a collection of N previous location measurements $(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$
- found the “best” ellipse by computing
 \[
 (\alpha^*, \beta^*, \gamma^*) = \argmin_{\alpha, \beta, \gamma} \sum_{i=1}^{N} (\alpha x_i^2 + \beta y_i^2 + \gamma x_i y_i - 1)^2
 \]
- looked for Ceres along the ellipse defined by
 \[
 \alpha^* x^2 + \beta^* y^2 + \gamma^* xy = 1
 \]
- the objective function

Unconstrained optimization problems may

- be convex or nonconvex, but typically nonlinear.
- have an objective function that is twice continuously differentiable, once continuously differentiable, structurally non-smooth, non-smooth
- contain continuous and/or discrete variables
- vary in size
 - small scale $\approx 1 - 100$ variables
 - medium scale $\approx 10^3$ variables
 - large scale $\approx 10^4 - 10^6$ variables
 - very large scale $\geq 10^6$ variables
 - infinite dimensional

We may be interested in

- a local solution or global solution
- the minimum value of the objective function and/or the minimizer
- finding multiple distinct minimizers
- the lowest value of the objective given time constraints or limits on the number of allowed evaluations of the objective function

Notation

- $g(x) := \nabla f(x) \in \mathbb{R}^n$
- $H(x) := \nabla^2 f(x) \in \mathbb{R}^{n \times n}$
- we will always assume that f is a continuous function
- we will study when
 - f is once or twice continuously differentiable (smooth optimization)
 - f is non-differentiable but with structure (structured non-smooth optimization)
 - n is small, medium, and large
- we will not study
 - derivatives of f are too expensive or unavailable (derivative free optimization)
 - integer programming, i.e., optimization where (some) variables are required to take integer values (Combinatorial Optimization EN.553.766)
 - computing a global minimizer (Introduction to Convexity EN.553.465/665, Convex Optimization EN.553.765, Stochastic Search and Optimization EN.553.763)

The basic problem

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

Compute N number of data points

Number of classes $N_c \approx 100$ (basic units of sound)

Number of features $N_f \approx 10,000$ thousand (coefficients in the mathematical representation of a digital sample of sound)

Number of parameters $\approx 1,000$ million (# classes \times # features)

Number of data points $N_d \approx 100$ billion and growing (size of data)

Compute w^* as solution to

\[
\min_w f(w) + \lambda ||w||_1 \quad (\lambda > 0 \text{ is a sparsity parameter})
\]

where

\[
f(w) := - \sum_{i=1}^{N_d} \log \left(\frac{\exp(w_i^T x_i)}{\sum_{j=1}^{N_c} \exp(w_j^T x_i)} \right)
\]

Predicted probability of new input \tilde{x} being in class k is

\[
p(y = k | x = \tilde{x}) = \frac{\exp(w_k^T \tilde{x})}{\sum_{j=1}^{N_c} \exp(w_j^T \tilde{x})}
\]

Major challenges

- $f(w) + \lambda ||w||_1$ is nonlinear
- $||w||_1$ is non-smooth when $w_i = 0$ for some i (structured non-smooth)
- $\nabla f(w)$ is very expensive! Must sum up 10 billion gradients