EN.553.761: Nonlinear Optimization I
Homework Assignment #3

Starred exercises require the use of MATLAB.

Exercise 3.1: Prove Lemmas 2.2 and 2.3 from the lecture notes on “Conjugate Gradient”.

Exercise 3.2: Solve the trust-region subproblem

\[\minimize_{s \in \mathbb{R}^n} s^T g + \frac{1}{2} s^T B s \quad \text{subject to} \quad \|s\|_2 \leq \delta \]

in the following cases:

(a) \[B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \ g = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \text{and} \ \delta = 2, \]

(b) \[B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \ g = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \text{and} \ \delta = 5/12 \]

Hint: \(\lambda = 2 \) is a root of the nonlinear equation

\[\frac{1}{(1 + \lambda)^2} + \frac{1}{(2 + \lambda)^2} = \frac{25}{144}. \]

(c) \[B = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ g = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \text{and} \ \delta = 5/12, \]

(d) \[B = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ g = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ \text{and} \ \delta = 1/2, \ \text{and} \]

(e) \[B = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ g = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ \text{and} \ \delta = \sqrt{2}. \]

Exercise 3.3: Consider the solution of problem (1) with data

\[B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \ \text{and} \ g = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

as a function of the trust-region radius \(\delta \). In which direction does the solution point as \(\delta \) shrinks to zero?

Exercise 3.4*: Write a MATLAB m-function called steihaug_CG.m that implements the truncated linear conjugate gradient method by Steihaug based on Algorithm 4 in the Lecture 06 slides. The function call should have the form
[p, iters, flag] = steihaug_CG(B, g, radius, tol)

where the input B is required to be a symmetric (possibly indefinite) matrix, g is a vector, radius > 0 is the trust-region radius, and tol ∈ (0,1) is the stopping tolerance. On exit, the resulting approximate Steihaug truncated-CG solution should be stored in the vector p, the number of iterations performed stored in iters, and the parameter flag should be set to one of the following values: −1 if the algorithm terminated because of negative curvature, 0 if the stopping tolerance was met, and 1 if the algorithm returned a boundary solution simply because the CG iterations grew larger than the trust-region radius.

Exercise 3.5*: Consider the problem

\[
\text{minimize } f(x) \\
\text{for } x \in \mathbb{R}^n
\]

where \(f \) is a twice continuously differentiable function.

(a) Write a MATLAB m-function called unc_TR.m that implements a trust-region method with trial steps computed from the Steihaug truncated linear CG method as given in Problem 4.4 above. The function call should have the form

\[
[x,F,G,H,iter,status] = unc_TR(fun,x0,maxit,printlevel,tol)
\]

where \texttt{fun} is of type \texttt{string} and represents the name of a Matlab m-function that computes \(f(x) \), \(\nabla f(x) \), and \(\nabla^2 f(x) \) for some desired function \(f \); it should be of the form

\[
[F,G,H] = \text{fun}(x)
\]

where for a given value \(x \) it returns the values of the function, gradient, and Hessian, respectively. The parameter \(x0 \) is an initial guess at a minimizer of \(f \), \texttt{maxit} is the maximum number of iterations allowed, \texttt{printlevel} determines the amount of printout required, and \texttt{tol} is the final stopping tolerance. In the code, if the parameter \texttt{printlevel} has the value zero, then no printing should occur; otherwise, a single line of output is printed (in column format) per iteration. On output, the parameters \(x \), \(F \), \(G \), and \(H \) should contain the final iterate, function value, gradient vector, and Hessian matrix computed by the algorithm. The parameter \texttt{iter} should contain the total number of iterations performed. Finally, \texttt{status} should have the value 0 if the final stopping tolerance was obtained and the value 1 otherwise.

(b) Write a separate MATLAB m-file with function declaration \([F,G,H] = \text{fun}(x)\) that returns the value \(F \), gradient \(G \), and Hessian \(H \) at the point \(x \in \mathbb{R}^2 \) of the function

\[
f(x) = 10(x_2 - x_1^2)^2 + (x_1 - 1)^2.
\]

Use your m-function \texttt{unc_TR.m} from part (a) to minimize \(f \) with starting point \(x_0 = (0,0) \).