Exercise 1.1: Compute $\nabla f(x)$ and $\nabla^2 f(x)$ for the following functions $f : \mathbb{R}^n \to \mathbb{R}$.

(a) $f(x) = \frac{1}{2} x^T H x$, where $H \in \mathbb{R}^{n \times n}$ is a fixed matrix. What if H is symmetric?

(b) $f(x) = b^T A x - \frac{1}{2} x^T A^T A x$, where $A \in \mathbb{R}^{m \times n}$ is a fixed matrix and $b \in \mathbb{R}^m$ is a fixed vector.

(c) $f(x) = \|x\|_2 = (\sum_{i=1}^n x_i^2)^{1/2}$

(d) $f(x) = \|Ax - b\|_2$, where $A \in \mathbb{R}^{m \times n}$ is a fixed matrix and $b \in \mathbb{R}^m$ is a fixed vector.

Exercise 1.2: Let $S \subseteq \mathbb{R}^n$, $f : S \to \mathbb{R}$. Let $x \in S$ and $s \in \mathbb{R}^n$ be such that $[x, x + s] \in S$.

(a) By defining $\phi(\alpha) = f(x + \alpha s)$ and using the Fundamental Theorem of Calculus:

$$\phi(1) = \phi(0) + \int_0^1 \phi'(\alpha) d\alpha,$$

show that

$$|f(x + s) - f(x) - g(x)^T s| \leq \frac{1}{2} \gamma_L \|s\|^2_2$$

whenever f has a Lipschitz continuous gradient with Lipschitz constant γ_L on S.

(b) Justify the formula

$$\phi(1) = \phi(0) + \phi'(0) + \int_0^1 \int_0^\alpha \phi''(t) \, dt \, d\alpha.$$

Hence, show that

$$|f(x + s) - f(x) - g(x)^T s - \frac{1}{2} s^T H(x) s| \leq \frac{1}{6} \gamma_Q \|s\|^3_2,$$

whenever f has a Lipschitz continuous Hessian with Lipschitz constant γ_Q on S.

Exercise 1.3: Write a MATLAB m-function that performs Newton’s Method for finding a zero of a function $F : \mathbb{R}^n \to \mathbb{R}^n$. The function call should have the form

$$[x,F,J,iter,status] = \text{newton}(\text{Fun},x0,maxit,printlevel,tol)$$

where Fun is of type string that holds the name of a Matlab m-function, $x0$ is an initial guess at a zero, maxit is the maximum number of iterations allowed, printlevel determines the amount of printout required, and tol is the final stopping tolerance. The Matlab m-function Fun should have the form

$$[F,J] = \text{Fun}(x)$$
where \(F \) and \(J \) should contain the value and Jacobian of a desired function at the point \(x \). In the code, if the parameter `printlevel` has the value zero, then no printing should occur; otherwise, a single line of output is printed (in column format) per iteration. On output, the parameters \(x, F, \) and \(J \) should contain the final iterate, function value, and Jacobian matrix computed by the algorithm. The parameter `iter` should contain the total number of iterations performed. Finally, `status` should have the value 0 if the final stopping tolerance was obtained and the value 1 otherwise.

Exercise 1.4 Let \(A \) be a given real symmetric matrix.

(a) Define an iteration of Newton’s Method for solving the \(n + 1 \) nonlinear equations

\[
(A - \lambda I)x = 0 \quad \text{and} \quad x^T x = 1
\]

in the \(n + 1 \) unknowns \((x, \lambda)\). Note that a zero \((x, \lambda)\) is an eigenpair of the matrix \(A \).

(b) Use the code you wrote for Exercise 2.1 to find an eigenpair \((x, \lambda)\) for the matrix

\[
A = \begin{pmatrix}
4 & 2 & 1 \\
2 & 3 & 0 \\
1 & 0 & 1
\end{pmatrix}
\]

with starting point \(x_0 = \begin{pmatrix} 1/5 \\ -1/5 \\ 4/5 \end{pmatrix} \) and \(\lambda_0 = 1 \).