Algorithms with Convergence to Second-Order Optimal Points

Daniel P. Robinson
Department of Applied Mathematics and Statistics
Johns Hopkins University

November 19, 2020
Outline

1. Introduction

2. Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3. Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4. Trust-Region Methods

5. Conclusions and Final Thoughts
Given a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, consider the unconstrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

(1)

- the case when f is continuously differentiable (first-order methods)
- the case when f is twice continuously differentiable (second-order methods)

Notation:

- $f(x_k) := f(x_k)$, $g_k := \nabla f(x_k)$, $H_k := \nabla^2 f(x_k)$
- We let (λ_k, v_k) denote a left-most eigenpair of H_k with $||v_k||_2 = 1$.
Previous methods

- **line search algorithms**
 - \(x_{k+1} = x_k + \alpha_k p_k \)
 - \(p_k \) was a descent direction, i.e., \(g_k^T p_k < 0 \)
 - \(\alpha_k > 0 \) was chosen using some line search procedure, e.g., backtracking Armijo
 - if \(f \) is bounded below on the initial level set and finite termination does not happen, then
 \[
 \lim_{k \to \infty} \|g_k\| = 0
 \]
 thus, all limit points of \(\{x_k\} \) satisfy the **first-order** necessary optimality condition.
 - notice that if \(g_k = 0 \), then no \(p_k \) exists such that \(g_k^T p_k < 0 \).
 - thus, can’t prove that limit points of \(\{x_k\} \) for previous line search algorithms satisfy
 second-order optimality necessary conditions.

- **trust region algorithms**
 - \(x_{k+1} = x_k + s_k \)
 - \(s_k \) was the solution to a trust region subproblem
 - an appropriate step \(s_k \) found by adjusting trust-region radius
 - if \(f \) is bounded below on the initial level set and finite termination does not happen, then
 \[
 \lim_{k \to \infty} \|g_k\| = 0
 \]
 thus, all limit points of \(\{x_k\} \) satisfy the **first-order** necessary optimality condition.
 - notice that if \(g_k = 0 \), then Cauchy condition requires the trial step \(s_k \) to satisfy
 \[
 m_k(0) - m_k(s_k) \geq \frac{1}{2} \|g_k\| \min \left\{ \frac{\|g_k\|}{1 + \|B_k\|_2}, \delta_k \right\} = 0
 \]
 which is satisfied by \(s_k = 0 \).
 - thus, can’t prove that limit points of \(\{x_k\} \) for previous trust-region algorithms satisfy
 second-order necessary optimality conditions.
Question: Can we derive algorithms that guarantee that limit points satisfy second-order necessary conditions?

Answer: Yes, if we incorporate directions of negative curvature into the methods.

Roughly: iterates must be able to move away from a saddle point.

- **line search methods:**
 - should use directions of negative curvature (when they exist)
 - line search procedure should take these directions into account

- **trust-region methods:**
 - should use directions of negative curvature (when they exist)
 - should generalize Cauchy condition to account for negative curvature

- what about fixed step size methods?
Outline

1. Introduction

2. Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3. Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4. Trust-Region Methods

5. Conclusions and Final Thoughts
Outline

1. Introduction

2. Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3. Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4. Trust-Region Methods

5. Conclusions and Final Thoughts
The algorithm described here uses the update formula

\[x_{k+1} = x_k + \alpha p_k \]

(2)

where

\(\alpha > 0 \) is a fixed step size.

\(p_k = -g_k \), i.e., \(p_k \) is the steepest descent direction at \(x_k \)

Question: Can we guarantee that \(f(x_{k+1}) < f(x_k) \)?

Answer: Yes, if we assume global Lipschitz continuity of \(\nabla f \) and \(\alpha \) is small enough.

Lemma 1

If \(\nabla f \) is Lipschitz continuous with constant \(L > 0 \) and \(\alpha \in (0, 2/L) \), then

\[f(x_{k+1}) \leq f(x_k) - c(\alpha) \|g_k\|^2_2 \]

where the constant \(c(\alpha) := \alpha(1 - \alpha L/2) > 0 \).

Proof: It follows from Lipschitz continuity of \(\nabla f \), (2), and \(p_k = -g_k \) that

\[
\begin{align*}
 f(x_{k+1}) &= f(x_k + \alpha p_k) \\
 &\leq f(x_k) + \alpha g_k^T p_k + (L/2)\alpha^2 \|p_k\|^2_2 \\
 &= f(x_k) - \alpha \|g_k\|^2_2 + (L/2)\alpha^2 \|g_k\|^2_2 \\
 &= f(x_k) - \alpha(1 - \alpha L/2) \|g_k\|^2_2 \\
 &\equiv f(x_k) - c(\alpha) \|g_k\|^2_2
\end{align*}
\]

which completes the proof. \(\blacksquare \)
The previous lemma suggest the following algorithm.

Algorithm 1 Fixed Step Size Algorithm

Require: let $L > 0$ be the Lipschitz constant for ∇f.

1. Choose $\alpha \in (0, 2/L)$.
2. Choose $x_0 \in \mathbb{R}^n$ and set $k \leftarrow 0$.
3. loop
4. if $g_k = 0$ then
5. Return first-order solution x_k
6. end if
7. Set $p_k \leftarrow -g_k$.
8. Set $x_{k+1} \leftarrow x_k + \alpha p_k$.
9. Set $k \leftarrow k + 1$.
10. end loop

Comments

- In practice, should include a stopping condition and a maximum allowed iterations.
- A reasonable stopping condition is

$$\| \nabla f(x_k) \| \leq 10^{-5} \max\{1, \| \nabla f(x_0) \|_2\}$$
Theorem 2

Assume that \(\nabla f \) is Lipschitz continuous with Lipschitz constant \(L \) and \(f \) is bounded below, i.e., \(f(x) \geq f^* \) for all \(x \in \mathbb{R}^n \). Let \(\{x_k\} \) be the iterate sequence generated by Algorithm 1. Then for all \(T \geq 1 \),

\[
\min_{k=0,\ldots,T} \|\nabla f(x_k)\| \leq \sqrt{\frac{f(x_0) - f^*}{c(\alpha)(T + 1)}}.
\]

(4)

Proof: Summing (3) for \(k = 0, \ldots, T \), we obtain

\[
f^* \leq f(x_{T+1}) \leq f(x_0) - c(\alpha) \sum_{k=0}^{T} \|\nabla f(x_k)\|^2 \leq f(x_0) - c(\alpha)(T + 1) \min_{k=0,\ldots,T} \|\nabla f(x_k)\|^2
\]

Rearranging and taking square roots gives us (4).
Theorem 2 applies to any f with Lipschitz continuous gradient. Can do better analysis more if f is also convex and guarantee near global optimality.

Advantages of using a fixed step size:

- The gradient descent method with a fixed step size is very simple.
- It does not require "extra" evaluations of f and ∇f as needed for linesearch methods.

Disadvantages of using a fixed step size:

- It appears that we need to know the value of the Lipschitz constant L. Not quite!
 - Note that in (3), it holds that if $\alpha \in (0, 1/L]$, then
 $$f(x_{k+1}) \leq f(x_k) - \frac{1}{2} \alpha \|g_k\|^2_2.$$ \hspace{1cm} (5)
 - During each iteration check if (5) holds, and if it doesn’t, then decrease α and try again, e.g., $\alpha \leftarrow \frac{1}{2} \alpha$.
 - Eventually, α will fall into the interval $(0, 1/L]$ as needed, and then (3) will always hold.
 - Seem sort of familiar? Similar, but not the same, as a linesearch.
- Even if we know L, it is a global Lipschitz constant
 - If L is very large, then the step size $\alpha \in (0, 2/L)$, which likely will lead to slow convergence.
 - Ideally, you would want a local Lipschitz constant at each iterate x_k, i.e., we should choose $\alpha \in (0, 2/L_k)$ where L_k denotes the local Lipschitz constant at x_k.
 - How to use search directions beyond steepest descent? Accepting the unit step?

An "optimal" α^* maximizes $c(\alpha)$ over $\alpha \in (0, 2/L)$, i.e., $\alpha^* := 1/L$.

- This "optimal" α^* usually does not perform the best because its calculation is based on the global Lipschitz constant, which usually overestimates local Lipschitz constants.
- Thus, the step size is often shorter than is actually "optimal".
- In practice, a step size $\alpha \in (0, 2/L)$ that is closer to $2/L$ often performs better.
Outline

1 Introduction

2 Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3 Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4 Trust-Region Methods

5 Conclusions and Final Thoughts
Second-order methods use second-derivatives. Since they use second-derivatives, ideally should aim for second-order optimality. Second-order necessary conditions:

\[\nabla f(x^*) = 0 \quad \text{and} \quad \nabla^2 f(x^*) \succeq 0 \]

Therefore, anytime at \(x_k \) it holds that \(H_k \not\succeq 0 \), we should be prepared to compute a direction of “sufficient negative curvature”, i.e., a direction \(d_k \) satisfying

\[d_k^T H_k d_k \leq \gamma \lambda_k \|d_k\|_2^2 \quad \text{and} \quad g_k^T d_k \leq 0 \] (6)

for some \(\gamma \in (0, 1] \) and where \(\lambda_k < 0 \) denotes the left-most eigenvalue of \(H_k \).

This definition ensures that \(d_k \) is a descent direction for \(f \) at \(x_k \), in the sense that there exists \(\epsilon > 0 \) such that \(f(x_k + \alpha d_k) < f(x_k) \) for all \(\alpha \in (0, \epsilon) \).

To get concrete convergence rates, we assume that a descent step \(p_k \) satisfying

\[-g_k^T p_k \geq \delta \|p_k\|_2 \|g_k\|_2 \] (7)

is computed during iteration \(k \), where \(\delta \in (0, 1] \).
Examples for computing p_k and d_k.

Examples for computing the descent direction p_k satisfying (7):

- $p_k = -\tau g_k$ for any $\tau > 0$ since
 \[-g_k^T p_k = \tau \|g_k\|^2 \geq \delta \tau \|g_k\|^2 = \delta \|\tau g_k\|_2 \|g_k\|_2 = \delta \|p_k\|_2 \|g_k\|_2 \]

- $B_k p_k = -g_k$ for any B_k that is symmetric, positive-definite, and satisfies
 \[\frac{\lambda_{\min}(B_k)}{\lambda_{\max}(B_k)} \geq \delta \quad \text{(exercise)} \]

Examples for computing the negative curvature direction d_k satisfying (6):

- With (λ_k, v_k) denoting a left-most eigenvalue-eigenvector pair for H_k, choose
 \[d_k = \begin{cases}
 v_k & \text{if } g_k^T v_k \leq 0 \\
 -v_k & \text{otherwise}
 \end{cases} \]
 since
 \[d_k^T H_k d_k = v_k^T H_k v_k = \lambda_k \|v_k\|^2 \leq \gamma \lambda_k \|v_k\|^2 = \gamma \lambda_k \|d_k\|^2 \]

- Compute d_k via matrix-free Lanczos iterations (see [3]).
Motivation for an algorithm

- Let \(\{ L, \sigma \} \subset (0, \infty) \) be Lipschitz constants for \(\{ \nabla f, \nabla^2 f \} \), respectively.
- For \(L_k \in (0, \infty) \) and \(\sigma_k \in (0, \infty) \) we define the model reductions

\[
\begin{align*}
 m_{p,k}(\alpha) &:= -\alpha g_k^T p_k - \frac{1}{2} L_k \alpha^2 \|p_k\|_2^2 \\
 m_{d,k}(\beta) &:= -\beta g_k^T d_k - \frac{1}{2} \beta^2 d_k^T H_k d_k - \frac{\sigma_k}{6} \beta^3 \|d_k\|_2^3
\end{align*}
\]

because we know that if \(L_k \geq L \) and \(\sigma_k \geq \sigma \), then

\[
\begin{align*}
 f(x_k + \alpha p_k) &\leq f(x_k) - m_{p,k}(\alpha) \\
 f(x_k + \beta d_k) &\leq f(x_k) - m_{d,k}(\beta)
\end{align*}
\]

for all \(\alpha \in (0, \infty) \) and \(\beta \in (0, \infty) \).

- These inequalities suggest that we should choose

\[
\alpha_k = \arg\max_{\alpha \geq 0} m_{p,k}(\alpha) \quad \text{and} \quad \beta_k = \arg\max_{\beta \geq 0} m_{d,k}(\beta)
\]

which can be shown (exercise) to be given by

\[
\begin{align*}
 \alpha_k &:= -\frac{g_k^T p_k}{L_k \|p_k\|_2^2} \\
 \beta_k &:= \frac{\left(-c_k + \sqrt{c_k^2 - 2\sigma_k \|d_k\|_2^3 g_k^T d_k}\right)}{\sigma_k \|d_k\|_2^3}
\end{align*}
\]

where \(c_k := d_k^T H_k d_k \) is the curvature along the direction \(d_k \).

- The fact that \(p_k \) and \(d_k \) are descent directions implies that \(\alpha_k, \beta_k > 0 \).

- The method below chooses which step to use based on a smart test.
Algorithm 2 Dynamic Method

Require: \(\rho \in (1, \infty) \) and initial estimates \(\{L_1, \sigma_1\} \subset (0, \infty) \)

1: for \(k \in \mathbb{N} \) do
2: \hspace{1em} if \(\lambda_k \geq 0 \) then set \(d_k \leftarrow 0 \) else choose \(d_k \) satisfying (6)
3: \hspace{1em} if \(g_k = 0 \) then set \(p_k \leftarrow 0 \) else choose \(p_k \) satisfying (7)
4: \hspace{1em} if \(d_k = p_k = 0 \) then return \(x_k \)
5: loop
6: \hspace{1em} compute \(\alpha_k \geq 0 \) and \(\beta_k \geq 0 \) from (9)
7: \hspace{1em} if \(m_{p,k}(\alpha_k) \geq m_{d,k}(\beta_k) \) then
8: \hspace{2em} if (8a) holds then
9: \hspace{3em} set \(x_{k+1} \leftarrow x_k + \alpha_k p_k \) and then exit loop
10: \hspace{2em} else \hspace{1em} set \(L_k \leftarrow \rho L_k \)
11: \hspace{2em} end if
12: \hspace{1em} else
13: \hspace{2em} if (8b) holds then
14: \hspace{3em} set \(x_{k+1} \leftarrow x_k + \beta_k d_k \) and then exit loop
15: \hspace{2em} else \hspace{1em} set \(\sigma_k \leftarrow \rho \sigma_k \)
16: \hspace{2em} end if
17: \hspace{1em} end if
18: \hspace{1em} end if
19: \hspace{1em} end loop
20: \hspace{1em} set \(L_{k+1} \in (0, L_k] \) and \(\sigma_{k+1} \in (0, \sigma_k] \)
21: \hspace{1em} end for
Lemma 3 (well-defined)

Algorithm 2 either terminates finitely in Step 4 or generates infinitely many iterates. In addition, at the end of each iteration k, it holds that

\[L_k \leq L_{\max} := \max\{L_1, \rho L\} \quad \text{and} \quad \sigma_k \leq \sigma_{\max} := \max\{\sigma_1, \rho \sigma\}. \quad (10) \]

Proof:
During iteration k, Algorithm 2 might finitely terminate. If it does not, then it enters the loop. If that loop were never to terminate, then the updates to L_k and σ_k would cause at least one of them to become arbitrarily large during that iteration inside the loop. Since (8a) holds whenever $L_k \geq L$, and (8b) holds whenever $\sigma_k \geq \sigma$, it follows that the loop must eventually terminate, thus proving the result.

The fact that (10) holds follows from the fact that L_k and σ_k are increased by the factor ρ and, as stated above, may only be needed when $L_k < L$ and $\sigma_k < \sigma$. \qed
Theorem 4 (limit points are second-order points (see [2, Theorem 2]))

When Algorithm 2 is executed, one of the following must hold:

(i) Algorithm 2 terminates in Step 4 with $g_k = 0$ and $\lambda_k \geq 0$, i.e., x_k satisfies the 2nd-order necessary optimality conditions.

(ii) The objective function is unbounded below over the sequence of iterates, i.e.,

$$\lim_{k \to \infty} f(x_k) = -\infty$$

(iii) Infinitely many iterates are computed and they satisfy

$$\lim_{k \to \infty} \|g_k\|_2 = 0 \quad \text{and} \quad \liminf_{k \to \infty} \lambda_k \geq 0$$

so that all limit points of $\{x_k\}$ satisfy the 2nd-order necessary optimality conditions.

Proof:
Algorithm 2 terminates finitely if and only if $d_k = p_k = 0$ for some k. This can only occur if $\lambda_k \geq 0$ and $g_k = 0$, which is the outcome for part (i). Thus, for the remainder of the proof, we assume that Algorithm 2 does not terminate finitely.

Moreover, we will also assume that case (ii) does not happen and prove that case (iii) must occur, i.e., we assume that there a scalar $f_{low} > -\infty$ such that

$$f(x_k) \geq f_{low} \quad \text{for all } k$$

and proceed to prove that case (iii) must happen.
If $p_k \neq 0$, then the definition of α_k in (9) and the condition on p_k in (7) ensure that

$$
m_{p,k}(\alpha_k) = -\alpha_k g_k^T p_k - \frac{1}{2} L_k \alpha_k^2 \|p_k\|_2^2
$$

$$
= - \left(\frac{-g_k^T p_k}{L_k \|p_k\|_2^2} \right) (g_k^T p_k) - \frac{1}{2} L_k \left(\frac{-g_k^T p_k}{L_k \|p_k\|_2^2} \right)^2 \|p_k\|_2^2
$$

$$
= \frac{1}{L_k} \left(\frac{g_k^T p_k}{\|p_k\|_2} \right)^2 - \frac{1}{2L_k} \left(\frac{g_k^T p_k}{\|p_k\|_2} \right)^2
$$

$$
= \frac{1}{2L_k} \left(\frac{g_k^T p_k}{\|p_k\|_2} \right)^2 \geq \frac{\delta^2}{2L_k} \|g_k\|_2^2.
$$

(13)

Similarly, if $d_k \neq 0$, then since β_k maximizes $m_{d,k}(\beta)$ over $\beta > 0$, defining

$$
\beta_k := -2d_k^T H_k d_k / (\sigma_k \|d_k\|_2^3) > 0
$$

and using (6) we find that

$$
m_{d,k}(\beta_k) \geq m_{d,k}(\hat{\beta}_k)
$$

$$
= -\hat{\beta}_k g_k^T d_k - \frac{1}{2} \hat{\beta}_k^2 d_k^T H_k d_k - \frac{1}{6} \sigma_k \hat{\beta}_k^3 \|d_k\|_2^3
$$

$$
\geq -\frac{1}{2} \hat{\beta}_k^2 d_k^T H_k d_k - \frac{1}{6} \sigma_k \hat{\beta}_k^3 \|d_k\|_2^3
$$

$$
= -\frac{2(d_k^T H_k d_k)^3}{3\sigma_k^2 \|d_k\|_2^6} \geq \frac{2\gamma^3}{3\sigma_k^2} |\lambda_k|^3.
$$

(14)
\[\beta \geq 0 \]
\[m_{d,k}(\beta) = -\beta g^T \mathbf{d}_k - \frac{\beta^2 d_k H_k d_k}{2} - \frac{\sigma_k}{6} \mathbf{B}^3 ||d_k||^3 \]
\[g^T \mathbf{d}_k \leq 0 \]
\[\mathbf{d}_k \approx -\beta d_k H_k d_k - \frac{\sigma_k}{2} \beta^2 ||d_k||^3 \]
\[\tilde{m}_{d,k}(\beta) = -\beta d_k H_k d_k - \frac{\sigma_k}{2} \beta^2 ||d_k||^3 \]
\[\maximize \tilde{m}_{d,k}(\beta) \]
\[\tilde{m}_{d,k}(\beta) = -\beta d_k H_k d_k - \frac{\sigma_k}{2} \beta^2 ||d_k||^3 \]
\[= 0 \]
We now claim that, for all k, it holds that
\[
f(x_k) - f(x_{k+1}) \geq \max\left\{ \frac{\delta^2}{2L_k} \|g_k\|_2^2, \frac{2\gamma^3}{3\sigma_k^2} \left| \min(0, \lambda_k) \right|^3 \right\},
\]
which we prove by considering two cases.

Case 1: the update $x_{k+1} \leftarrow x_k + \alpha_k p_k$ is completed.
It must be that $p_k \neq 0$, (8a), and $m_{p,k}(\alpha_k) \geq m_{d,k}(\beta_k)$ hold (see Algorithm 2).
Combining these facts with (13) and (14) shows that
\[
f(x_k + \alpha_k p_k) \leq f(x_k) - m_{p,k}(\alpha_k)
= f(x_k) - \max\{m_{p,k}(\alpha_k), m_{d,k}(\beta_k)\}
\leq f(x_k) - \max\left\{ \frac{\delta^2}{2L_k} \|g_k\|_2^2, \frac{2\gamma^3}{3\sigma_k^2} \left| \min(0, \lambda_k) \right|^3 \right\}
\]
which gives (15); note the last inequality holds regardless of whether d_k is nonzero.

Case 2: the update $x_{k+1} \leftarrow x_k + \beta_k d_k$ is completed.
It must be that $d_k \neq 0$, (8b), and $m_{p,k}(\alpha_k) < m_{d,k}(\beta_k)$ hold (see Algorithm 2).
Combining these facts with (13) and (14) show that
\[
f(x_k + \beta_k d_k) \leq f(x_k) - m_{d,k}(\beta_k)
= f(x_k) - \max\{m_{p,k}(\alpha_k), m_{d,k}(\beta_k)\}
\leq f(x_k) - \max\left\{ \frac{\delta^2}{2L_k} \|g_k\|_2^2, \frac{2\gamma^3}{3\sigma_k^2} \left| \min(0, \lambda_k) \right|^3 \right\}
\]
which gives (15); note the last inequality holds regardless of whether p_k is nonzero.
For each $\ell \in \mathbb{N}$, it follows from (15) and the bounds in (10) that

$$f_1 - f_{\ell+1} = \sum_{k=1}^{\ell} (f(x_k) - f(x_{k+1}))$$

$$\geq \sum_{k=1}^{\ell} \max \left\{ \frac{\delta^2}{2L_k} \|g_k\|_2^2, \frac{2\gamma^3}{3\sigma_k^2} |\min(0, \lambda_k)|^3 \right\}$$

$$\geq \sum_{k=1}^{\ell} \max \left\{ \frac{\delta^2}{2L_{\max}} \|g_k\|_2^2, \frac{2\gamma^3}{3\sigma_{\max}^2} |\min(0, \lambda_k)|^3 \right\}$$

from which it follows, by letting $\ell \to \infty$ and using (12), that

$$\infty > f_0 - f_{\text{low}} \geq \sum_{k=1}^{\infty} \max \left\{ \frac{\delta^2}{2L_{\max}} \|g_k\|_2^2, \frac{2\gamma^3}{3\sigma_{\max}^2} |\min(0, \lambda_k)|^3 \right\}.$$

It now trivially follows that

$$\min_{\mathcal{D}_T} \sum_{k=1}^{\infty} \|g_k\|_2^2 < \infty \quad \text{and} \quad \sum_{k=1}^{\infty} |\min(0, \lambda_k)| < \infty$$

which implies that

$$\lim_{k \to \infty} \|g_k\|_2 = 0 \quad \text{and} \quad \lim_{k \to \infty} |\min(0, \lambda_k)| = 0.$$

The proof is finished because the previous limits are equivalent to (11).
The convergence theory allows $L_{k+1} \leftarrow L_k$ and $\sigma_{k+1} \leftarrow \sigma_k$ in Step 21.

- In this case, the Lipschitz constant estimates are monotonically increasing.
- In Algorithm 2 we allow them to decrease since this might yield better practical results.

What if the Lipschitz constants L and σ for g and H, respectively, are known?

- One could set $L_k = L$ and $\sigma_k = \sigma$ for each iteration, so that the loop is not needed.
- This would generally lead to more iterations (when a termination condition is used).
- If the cost of evaluating f is substantial, this fixed parameter choice might work well.

Each time through the loop, condition (8a) or (8b) is tested, but not both.

- Evaluating both would require an extra evaluation of f.
- If the cost of evaluating f is not a concern, then one could choose between the p_k and d_k based on the actual objective function decrease rather than on the model decrease.

Can also adapt to get standard convergence rate: after $O \left(\frac{1}{\epsilon}^3 \right)$ steps, we must have visited a point where the gradient norm is at most ϵ and the minimum eigenvalue of the Hessian are at least $-\epsilon$.
1 Introduction

2 Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3 Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4 Trust-Region Methods

5 Conclusions and Final Thoughts
Outline

1 Introduction

2 Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3 Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4 Trust-Region Methods

5 Conclusions and Final Thoughts
Motivation:
- First-order linesearch algorithms use descent directions p_k to prove
 \[
 \lim_{k \to \infty} \|g_k\|_2 = 0
 \]
 under commonly made assumptions on f and the directions $\{p_k\}$.
- This is not sufficient for establishing second-order conditions.
- For example, consider the situation that x_k is a saddle point:
 - It follows that $g_k = 0$ and $\lambda_{\text{min}}(H_k) < 0$.
 - There does not exist any direction p_k satisfying $g_k^T p_k < 0$ (no descent direction).
 - First-order methods must terminate even if $\lambda_k \equiv \lambda_{\text{min}}(H_k) < 0$.
- Second-order methods must be allowed to use directions of negative curvature.

Basic Challenges:
- Develop linesearch methods that use descent and negative curvature directions.
- What properties should negative curvature directions satisfy?
- Generalize linesearch conditions (we will focus on the Armijo condition).
Outline

1 Introduction

2 Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3 Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4 Trust-Region Methods

5 Conclusions and Final Thoughts
Conditions required of a descent direction p_k

At iterate x_k, we should compute any descent direction p_k satisfying

$$g_k^T p_k \leq -\gamma_p \|g_k\|_2 \|p_k\|_2 \quad \text{and} \quad (1/\kappa_p) \|g_k\|_2 \leq \|p_k\|_2 \leq \kappa_p \|g_k\|_2$$

for some chosen constants $\gamma_p \in (0, 1]$ and $\kappa_p \in [1, \infty)$.

Comments:

- Condition (16) ensures that p_k is a “sufficient” descent direction.
- Condition (17) ensures that p_k is roughly the same size as g_k.
- Both conditions hold in the following settings (exercises):
 - holds for $p_k = -g_k$
 - holds for $B_k p_k = -g_k$ provided B_k is chosen to be symmetric, and there exists λ_{\min} and λ_{\max} satisfying

$$0 < \lambda_{\min} \leq \lambda_{\min}(B_k) \leq \lambda_{\max}(B_k) \leq \lambda_{\max} < \infty \quad \text{for all} \ k$$
Conditions required of a negative curvature direction d_k

At iterate x_k, we should compute any negative curvature direction d_k satisfying

$$d_k^T H_k d_k \leq \gamma_d \lambda_k \|d_k\|_2^2$$ \hspace{1cm} (18)

$$(1/\kappa_d)|\min(0, \lambda_k)| \leq \|d_k\|_2 \leq \kappa_d |\min(0, \lambda_k)|$$ \hspace{1cm} and \hspace{1cm} (19)

$$d_k^T g_k \leq 0$$ \hspace{1cm} (20)

for some constants $\gamma_d \in (0, 1]$ and $\kappa_d \in [1, \infty)$.

Comments:

- Condition (18) ensures that d_k is a direction of negative curvature. Moreover, since

$$\frac{d_k^T H_k d_k}{\|d_k\|_2^2} \leq \gamma_d \lambda_k = \gamma_d \frac{v_k^T H_k v_k}{\|v_k\|_2^2}$$

we know that d_k achieves a fraction (γ_d) of the most negative curvature.

- Condition (19) ensures that d_k is roughly the size of $|\lambda_k|$, when $\lambda_k < 0$.

- Condition (20) ensures that d_k is a non-ascent direction.

- All three conditions are satisfied in the following settings (exercises):
 - holds for $d_k = \pm |\min(0, \lambda_k)| v_k$ (the sign \pm is chosen to ensure that (20) holds)
 - holds for any sufficiently accurate (that depends on the choice of γ_d) approximation to the v_k in the previous bullet point.
How do we use p_k and d_k?

Definition 5 (weighting function)

We say that a function $\omega : \mathbb{R} \rightarrow [0, \infty)$ is a **weighting function** if and only if

1. $\omega(\cdot)$ is twice continuously differentiable
2. $\omega(0) = 0$

A curvilinear search path

Given x_k, p_k, d_k, and weighting functions $\omega_{k,p}$ and $\omega_{k,d}$, the **curvilinear search path** is

$$\{x_k + s_k(\alpha) \in \mathbb{R}^n \mid \alpha \geq 0\} \subset \mathbb{R}^n$$

where

$$s_k(\alpha) := \omega_{k,p}(\alpha)p_k + \omega_{k,d}(\alpha)d_k$$

Comments:

- $s_k(\cdot)$ is twice continuously differentiable because $w_{k,p}(\cdot)$ and $w_{k,d}(\cdot)$ are.
- The most popular choice for weighting functions is

$$w_{k,p}(\alpha) = w_{k,d}(\alpha) = \alpha$$

so that

$$s_k(\alpha) = \alpha(p_k + d_k)$$
Curvilinear search path for $\alpha \in [0, 1]$ (purple line segment) for the case

$$w_{k,p}(\alpha) = w_{k,d}(\alpha) = \alpha$$
Curvilinear search path for $\alpha \in [0, 1]$ (purple line segment) for the case

$$w_{k,p}(\alpha) = \alpha \quad \text{and} \quad w_{k,d}(\alpha) = \alpha^2$$
A second-order “linesearch”

Define $\phi_k : \mathbb{R} \to \mathbb{R}$ as the objective function evaluated on the curvilinear path:

$$\phi_k(\alpha) := f(x_k + s_k(\alpha))$$

so that we have

$$\phi_k'(\alpha) = \nabla f(x_k + s_k(\alpha))^T s_k'(\alpha) \quad (21)$$

$$\phi_k''(\alpha) = s_k'(\alpha)^T \nabla^2 f(x_k + s_k(\alpha)) s_k'(\alpha) + \nabla f(x_k + s_k(\alpha))^T s_k''(\alpha) \quad (22)$$

which may be combined with $s_k(0) = 0$ (why?) to obtain

$$\phi_k'(0) = g_k^T s_k'(0) \quad (23)$$

$$\phi_k''(0) = s_k'(0)^T H_k s_k'(0) + g_k^T s_k''(0) \quad (24)$$

Definition 6 (second-order Armijo condition)

Given $\eta \in (0, 1)$, we say that $\bar{\alpha} > 0$ satisfies the second-order Armijo condition if

$$\phi_k(0) - \phi_k(\bar{\alpha}) \geq \eta (q_k(0) - q_k(\bar{\alpha})) \quad (25)$$

where the (potentially) quadratic function q_k is defined as

$$q_k(\alpha) := \phi_k(0) + \phi_k'(0) \alpha + \frac{1}{2} \min\{0, \phi_k''(0)\} \alpha^2$$
Lemma 7 (2nd-order Armijo condition is satisfied for all α sufficiently small)

If either
\[\phi_k'(0) < 0, \quad \text{or} \quad \phi_k'(0) \leq 0 \quad \text{and} \quad \phi_k''(0) < 0 \]
(26)

then the second-order Armijo condition (25) holds for all sufficiently small $\alpha > 0$.

Proof:
Motivated by the second-order Armijo condition, let us define the function
\[\psi_k(\alpha) := \phi_k(0) - \phi_k(\alpha) - \eta(q_k(0) - q_k(\alpha)). \]

Note that
\[\psi_k(0) = 0 \]
and that
\[\psi_k'(\alpha) = -\phi_k'(\alpha) + \eta q_k'(\alpha) \]
\[\psi_k''(\alpha) = -\phi_k''(\alpha) + \eta q_k''(\alpha) \]

so that in particular
\[\psi_k'(0) = -\phi_k'(0) + \eta \phi_k'(0) = (\eta - 1)\phi_k'(0) \]
(27)
\[\psi_k''(0) = -\phi_k''(0) + \eta \min\{0, \phi_k''(0)\} = \min\{-\phi_k''(0), (\eta - 1)\phi_k''(0)\}. \]
(28)

Now consider the two cases in the statement of the lemma.
Case 1: $\phi_k'(0) < 0$.

In this case, we have from (27) and $\eta \in (0, 1)$ that

$$\psi_k'(0) > 0$$

so that $\psi_k(\alpha) > 0$ for all sufficiently small $\alpha > 0$, which is equivalent to (25).

Case 2: $\phi_k'(0) \leq 0$ and $\phi_k''(0) < 0$.

In this case, we have from (27), (28), and $\eta \in (0, 1)$ that

$$\psi_k'(0) \geq 0 \quad \text{and} \quad \psi_k''(0) > 0$$

so that $\psi_k(\alpha) > 0$ for all sufficiently small $\alpha > 0$, which is equivalent to (25).
Lemma 8

If the following hold:
- p_k is computed to satisfy (16)–(17)
- d_k is computed to satisfy (18)–(20)
- at least one of p_k and d_k is nonzero, and
- we choose $\omega_{k,p}(\alpha) = \omega_{k,d}(\alpha) = \alpha$
then (26) holds.

Proof:
Note that from the choice of the weight functions, we have

\[s_k(\alpha) = \alpha p_k + \alpha d_k = \alpha (p_k + d_k) \]

so that

\[s_k'(0) = p_k + d_k \quad \text{and} \quad s_k''(0) = 0. \]

Combining this with (23) and (24) it follows that

\[\phi_k'(0) = g_k^T (p_k + d_k) \quad \text{and} \quad \phi_k''(0) = (p_k + d_k)^T H_k (p_k + d_k). \]

(29)

We now consider two cases.
Case 1: $p_k \neq 0$

In this case, it follows from (17) that $g_k \neq 0$ and then from (16) that $g_k^T p_k \leq -\gamma_p \|g_k\|_2 \|p_k\|_2 < 0$. Combining this fact with (20) and (29) shows that

$$
\phi'_k(0) = g_k^T (p_k + d_k) = g_k^T p_k + g_k^T d_k \leq g_k^T p_k < 0
$$

which establishes that (26) holds in this case.

Case 2: $p_k = 0$

In this case, it follows from (20) that

$$
\phi'_k(0) = g_k^T (p_k + d_k) = g_k^T d_k \leq 0,
$$

which shows that the first condition in the second possible scenario of (26) holds.

Next, let us observe from the statement of the lemma that $d_k \neq 0$ (because $p_k = 0$ in this case), which by (19) also ensures that $\lambda_k < 0$. By combining these facts with (29), $p_k = 0$, and (18) we obtain

$$
\phi''_k(0) = (p_k + d_k)^T H_k (p_k + d_k) = d_k^T H_k d_k \leq \gamma d \lambda_k \|d_k\|_2^2 < 0
$$

which shows that the second condition in the second possible scenario of (26) holds.

Remark: By combining Lemma 7 and Lemma 8 we know that the following general curvilinear search method is well defined.
Algorithm 3 General curvilinear search method

Require: \(\{\tau, \eta\} \subset (0, 1) \) and \(\alpha_{init} \in (0, \infty) \).
1: Choose \(x_0 \) and evaluate \(f_0, g_0 \), and \(H_0 \).
2: for \(k \in \{0, 1, 2, \ldots\} \) do
3: Compute a descent direction \(p_k \) satisfying (16)–(17).
4: Compute a negative curvature direction \(d_k \) satisfying (18)–(20).
5: Choose weight functions \(\omega_{k,p}(\cdot) \) and \(\omega_{k,d}(\cdot) \) so that (26) holds.
6: Set \(\alpha_k \leftarrow \alpha_{init} \)
7: loop \(\triangleright \) curvilinear search
8: if \((\phi_k(0) - \phi_k(\alpha_k)) \geq \eta(q_k(0) - q_k(\alpha_k)) \) then
9: exit loop with the current \(\alpha_k \) value \(\triangleright \) 2nd-order Armijo
10: else
11: Set \(\alpha_k \leftarrow \tau \alpha_k \)
12: end if
13: end loop
14: Set \(x_{k+1} \leftarrow x_k + s_k(\alpha_k) \)
15: Evaluate \(f(x_{k+1}), g_{k+1}, \) and \(H_{k+1} \)
16: end for

Comments:
- A common choice is \(\alpha_{init} = 1 \) when Newton-like descent directions are computed.
- A reasonable termination condition should be used, such as

\[
\|g_k\| \leq 10^{-6} \max\{1, \|g_0\|\} \quad \text{and} \quad \lambda_k \geq 10^{-6} \min\{-1, \lambda_0\}
\]
1. Introduction

2. Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3. Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4. Trust-Region Methods

5. Conclusions and Final Thoughts
Our analysis makes use of the iteration index set

\[S := \{ k : \phi''_k(0) < 0 \} \] \hspace{1cm} (30)

which are the iterations that a true second-order model is used in the Armijo search.

We will also use the assumption that \(f \) is bounded below on the initial level set.

Assumption 3.1 (bounded objective on the initial level set)

The objective function \(f \) is bounded below on the level set

\[L_0 := \{ x \in \mathbb{R}^n : f(x) \leq f(x_0) \} \]

We also use the following additional notation:

- \(L_{k,0} \) : denotes the Lipschitz constant for \(\phi'_k(\alpha) \) at \(\alpha = 0 \)
- \(\sigma_{k,0} \) : denotes the Lipschitz constant for \(\phi''_k(\alpha) \) at \(\alpha = 0 \)
Lemma 9

If \(k \notin S \), then

\[
\phi_k''(0) \geq 0 \quad \text{and} \quad \alpha_k \geq \min \left\{ \alpha_{\text{init}}, \frac{2\tau(1-\eta)|\phi'_k(0)|}{L_{k,0}} \right\}
\]

Proof: Since \(k \notin S \) it follows that \(\phi_k''(0) \geq 0 \), which proves (31). From Step 5 of Algorithm 3 (specifically that (26) holds) we have \(\phi'_k(0) < 0 \). Using this fact and a Taylor’s approximation shows that if

\[
\alpha \in \left(0, \frac{2(\eta - 1)\phi'_k(0)}{L_{k,0}}\right]
\]

then

\[
\phi_k(\alpha) \leq \phi_k(0) + \phi_k(0)'\alpha + \frac{1}{2}L_{k,0}\alpha^2 \\
\leq \phi_k(0) + \phi'_k(0)\alpha + (\eta - 1)\phi'_k(0)\alpha = \phi_k(0) + \eta\phi'_k(0)\alpha,
\]

so that the Armijo condition (25) holds for \(\alpha \). It follows from this fact and the strategy for updating \(\alpha_k \) in Algorithm 3 that

\[
\alpha_k \geq \min \left\{ \alpha_{\text{init}}, \frac{2\tau(1-\eta)|\phi'_k(0)|}{L_{k,0}} \right\}
\]

as claimed in (32), which completes the proof. \(\square \)
Lemma 10

If Assumption 3.1 holds and the complement of the set S, i.e., $\mathbb{N} \setminus S$ has infinite cardinality, then

$$\lim \min_{k \notin S} \left\{ |\phi_k'(0)|, \frac{|\phi_k'(0)|^2}{L_{k,0}} \right\} = 0$$

Proof: Consider any $k \notin S$. It then follows from (31) and the fact that α_k satisfies the Armijo condition in Step 8 that

$$f(x_{k+1}) = f(x_k + s(\alpha_k))$$
$$= \phi_k(\alpha_k)$$
$$\leq \phi_k(0) - \eta(q_k(0) - q_k(\alpha_k))$$
$$= \phi_k(0) + \eta \phi_k'(0) \alpha_k = f(x_k) - \eta |\phi_k'(0)| \alpha_k.$$

It follows from this inequality, Assumption 3.1, and a standard argument that

$$\lim_{k \notin S} |\phi_k'(0)| \alpha_k = 0. \quad (33)$$

Combining this limit with (32) gives

$$\lim \min_{k \notin S} \left\{ \alpha_{\text{init}} |\phi_k'(0)|, \frac{2\tau (1 - \eta)|\phi_k'(0)|^2}{L_{k,0}} \right\} = 0.$$

Since $\eta \in (0, 1)$ and $\alpha_{\text{init}} \in (0, \infty)$, we can conclude that

$$\lim \min_{k \notin S} \left\{ |\phi_k'(0)|, \frac{|\phi_k'(0)|^2}{L_{k,0}} \right\} = 0.$$
Lemma 11

If \(k \in S \), then

\[
\alpha_k \geq \min \left\{ \alpha_{\text{init}}, \frac{3\tau (1-\eta) |\phi_k''(0)|}{\sigma_{k,0}} \right\}
\]

\[
\alpha_k \geq \min \left\{ \alpha_{\text{init}}, \frac{2\tau (1-\eta) |\phi_k'(0)|}{L_{k,0} + \eta |\phi_k''(0)|} \right\}
\]

(34)

Proof: We break the proof into two scenarios based on (34).

Scenario 1: Suppose that \(\alpha \) satisfies

\[
\alpha \in \left(0, \frac{3(\eta - 1) \phi_k''(0)}{\sigma_{k,0}} \right].
\]

(35)

Then, it follows from a Taylor’s approximation, \(\phi_k'(0) \leq 0 \) (see (26)), and \(\eta \in (0, 1) \) that

\[
\phi_k(\alpha) \leq \phi_k(0) + \phi_k'(0) \alpha + \frac{1}{2} \phi_k''(0) \alpha^2 + \frac{\sigma_{k,0}}{6} \alpha^3
\]

\[
\leq \phi_k(0) + \eta \phi_k'(0) \alpha + \frac{1}{2} \phi_k''(0) \alpha^2 + \frac{1}{2} (\eta - 1) \phi_k''(0) \alpha^2
\]

\[
= \phi_k(0) + \eta \left(\phi_k'(0) \alpha + \frac{1}{2} \phi_k''(0) \alpha^2 \right)
\]

\[
= \phi_k(0) - \eta \left(q_k(0) - q_k(\alpha) \right)
\]

meaning that the second-order Armijo condition (25) holds for \(\alpha \).
Scenario 2: Suppose that α satisfies

$$\alpha \in \left(0, \frac{2(\eta - 1)\phi'_k(0)}{L_{k,0} - \eta\phi''_k(0)}\right].$$ \hspace{1cm} (36)$$

Then, it follows from a Taylor's approximation, $\phi'_k(0) < 0$ (see (36)), and $\eta \in (0, 1)$ that

$$\phi_k(\alpha) \leq \phi_k(0) + \phi_k(0)' \alpha + \frac{1}{2}L_{k,0}\alpha^2$$
$$= \phi_k(0) + \phi'_k(0)\alpha + \frac{1}{2}L_{k,0}\alpha^2 - \frac{1}{2}\eta\phi''_k(0)\alpha^2 + \frac{1}{2}\eta\phi''_k(0)\alpha^2$$
$$= \phi_k(0) + \phi'_k(0)\alpha + \frac{1}{2}(L_{k,0} - \eta\phi''_k(0))\alpha^2 + \frac{1}{2}\eta\phi''_k(0)\alpha^2$$
$$= \phi_k(0) + \phi'_k(0)\alpha + (\eta - 1)\phi'_k(0)\alpha + \frac{1}{2}\eta\phi''_k(0)\alpha^2$$
$$= \phi_k(0) + \eta(\phi'_k(0)\alpha + \frac{1}{2}\phi''_k(0)\alpha^2)$$
$$= \phi_k(0) - \eta(q_k(0) - q_k(\alpha))$$

meaning that the second-order Armijo condition (25) holds for α.

It follows from both scenarios and the update strategy for α_k in Algorithm 3 that (34) holds, which completes the proof. \qed
Lemma 12

If Assumption 3.1 holds and \mathcal{S} has infinite cardinality, then

$$0 = \lim_{k \in \mathcal{S}} \min \left\{ |\phi_k'(0)|, \frac{|\phi_k'(0)|^2}{L_{k,0} + \eta |\phi_k''(0)|} \right\} \quad \text{and}$$

$$0 = \lim_{k \in \mathcal{S}} \min \left\{ |\phi_k''(0)|, \frac{|\phi_k''(0)|^3}{(\sigma_{k,0})^2} \right\}. \quad (37)$$

(38)

Proof:
Let $k \in \mathcal{S}$ so that $\phi_k''(0) < 0$ and the second-order Armijo condition gives

$$f(x_{k+1}) = f(x_k + s_k(\alpha_k))$$

$$= \phi_k(\alpha_k)$$

$$\leq \phi_k(0) - \eta (q_k(0) - q_k(\alpha_k))$$

$$= \phi_k(0) - \eta (-\phi_k'(0)\alpha_k - \frac{1}{2}\phi_k''(0)\alpha_k^2)$$

$$= f(x_k) - \eta |\phi_k'(0)|\alpha_k - \frac{1}{2}\eta |\phi_k''(0)|\alpha_k^2$$

where we also used $\phi_k'(0) \leq 0$ (see (26)). Combining this with Assumption 3.1 gives

$$\lim_{k \in \mathcal{S}} |\phi_k'(0)|\alpha_k = 0 \quad \text{and} \quad \lim_{k \in \mathcal{S}} |\phi_k''(0)|\alpha_k^2 = 0.$$
On the previous slide we proved that
\[\lim_{k \in S} |\phi'_k(0)| \alpha_k = 0 \quad \text{and} \quad \lim_{k \in S} |\phi''_k(0)| \alpha_k^2 = 0. \] (39)

By combing the first limit in (39) with the second inequality in (34) we find that
\[0 = \lim_{k \in S} |\phi'_k(0)| \min \left\{ \alpha_{init}, \frac{2\tau(1-\eta)|\phi'_k(0)|}{L_k,0 + \eta|\phi''_k(0)|} \right\} \]
\[= \lim_{k \in S} \min \left\{ \alpha_{init}|\phi'_k(0)|, \frac{2\tau(1-\eta)|\phi'_k(0)|^2}{L_k,0 + \eta|\phi''_k(0)|} \right\} \]
which gives
\[\lim_{k \in S} \min \left\{ |\phi'_k(0)|, \frac{|\phi'_k(0)|^2}{L_k,0 + \eta|\phi''_k(0)|} \right\} = 0, \]
i.e., that (37) holds. On the other hand, the second limit in (39) and the first inequality in (34) together give
\[0 = \lim_{k \in S} |\phi''_k(0)| \min \left\{ \alpha_{init}, \frac{3\tau(1-\eta)|\phi''_k(0)|}{\sigma_k,0} \right\}^2 \]
\[= \lim_{k \in S} \min \left\{ \alpha_{init}^2|\phi''_k(0)|, \frac{9\tau^2(1-\eta)^2|\phi''_k(0)|^3}{(\sigma_k,0)^2} \right\} \]
which means that
\[\lim_{k \in S} \min \left\{ |\phi''_k(0)|, \frac{|\phi''_k(0)|^3}{(\sigma_k,0)^2} \right\} = 0 \]
thus establishing that (38) holds. This completes the proof. \[\Box\]
Theorem 13

The iterates generated by Algorithm 3 satisfy

\[
0 = \lim_{k \to \infty} \min \left\{ |\phi_k'(0)|, \frac{|\phi_k'(0)|^2}{L_{k,0} + \eta \min\{0, \phi_k''(0)\}} \right\} \quad \text{and} \quad (40)
\]

\[
0 = \lim_{k \to \infty} \min \left\{ |\min\{0, \phi_k''(0)\}|, \frac{|\min\{0, \phi_k''(0)\}|^3}{(\sigma_{k,0})^2} \right\} \quad (41)
\]

Proof: The result follows from Lemma 12, Lemma 10, (31), and the definition of \(S\). □

Big Picture Comment: The idea is to combine Theorem 13 with specific choices for the weighting functions to derive convergence results, namely, that

\[
\lim_{k \to \infty} \|g_k\|_2 = 0 \quad \text{and} \quad \liminf_{k \to \infty} \lambda_k \geq 0
\]
Outline

1 Introduction

2 Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3 Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4 Trust-Region Methods

5 Conclusions and Final Thoughts
Instance: $\omega_{k,p}(\alpha) = \omega_{k,d}(\alpha) = \alpha$ for all k

In this case we have

$$s_k(\alpha) = \alpha(p_k + d_k)$$
$$s'_k(\alpha) = p_k + d_k$$
$$s''_k(\alpha) = 0$$
$$\phi'_k(\alpha) = \nabla f(x_k + \alpha(p_k + d_k))^T(p_k + d_k)$$
$$\phi''_k(\alpha) = (p_k + d_k)^T \nabla^2 f(x_k + \alpha(p_k + d_k))(p_k + d_k)$$
$$\phi'_k(0) = g_k^T(p_k + d_k)$$
$$\phi''_k(0) = (p_k + d_k)^T H_k(p_k + d_k)$$

We also recall that Lemma 8 ensures that either

(i) during some iteration it so-happens that $p_k = d_k = 0$, in which case x_k already satisfies the second-order necessary optimality conditions; or

(ii) the conditions in (26) will be satisfied as required by Step 5 of Algorithm 3, so that Algorithm 3 is well-posed for this choice.

For the remainder of this example, we assume that case (ii) occurs.
Instance: \(\omega_{k,p}(\alpha) = \omega_{k,d}(\alpha) = \alpha \) for all \(k \)

Next, we can observe by using the Lipschitz constant \(L \) for \(\nabla f \) that

\[
|\phi_k'(\alpha) - \phi_k'(0)| = |\nabla f(x_k + \alpha(p_k + d_k))^T(p_k + d_k) - g_k^T(p_k + d_k)|
\leq \|\nabla f(x_k + \alpha(p_k + d_k)) - g_k\|_2\|p_k + d_k\|_2
\leq (L\|p_k + d_k\|_2^2)\alpha \text{ for all } \alpha
\]

so that

\[
L_{k,0} \leq L\|p_k + d_k\|_2^2. \tag{42}
\]

Similarly, we can observe by using the Lipschitz constant \(\sigma \) for \(\nabla^2 f \) that

\[
|\phi_k''(\alpha) - \phi_k''(0)|
= |(p_k + d_k)^T\nabla^2 f(x_k + \alpha(p_k + d_k))(p_k + d_k) - (p_k + d_k)^T H_k(p_k + d_k)|
\leq \|\nabla^2 f(x_k + \alpha(p_k + d_k)) - H_k\|_2\|p_k + d_k\|_2^2
\leq \left(\sigma\|p_k + d_k\|_2^3\right)\alpha \text{ for all } \alpha
\]

so that

\[
\sigma_{k,0} \leq \sigma\|p_k + d_k\|_2^3. \tag{43}
\]
Instance: \(\omega_{k,p}(\alpha) = \omega_{k,d}(\alpha) = \alpha\) for all \(k\)

It now follows from (40), (42), (20), (16), (17), and the definition of \(\lambda_k\) that

\[
0 = \lim_{k \to \infty} \min_{\kappa \in \mathbb{R}} \left\{ |\phi'_k(0)|, \frac{|\phi'_k(0)|^2}{L_{k,0} + \eta \min\{0, \phi''_k(0)\}} \right\}
\]

\[
= \lim_{k \to \infty} \min_{\kappa \in \mathbb{R}} \left\{ |g_k^T(p_k + d_k)|, \frac{|g_k^T(p_k + d_k)|^2}{L||p_k + d_k||_2^2 + \eta \min\{0, (p_k + d_k)^TH_k(p_k + d_k)\}} \right\}
\]

\[
= \lim_{k \to \infty} \min_{\kappa \in \mathbb{R}} \left\{ |g_k^T p_k|, \frac{|g_k^T p_k|^2}{L||p_k + d_k||_2^2 + \eta \min\{0, \lambda_k||p_k + d_k||_2^2\}} \right\}
\]

\[
= \lim_{k \to \infty} \min_{\kappa \in \mathbb{R}} \left\{ \left(\gamma_p \frac{||g_k||_2^2}{||p_k||_2^2}\right), \frac{\gamma_p^2 ||g_k||_2^2||p_k||_2^2}{L||p_k + d_k||_2^2 + \eta \min\{0, \lambda_k||p_k + d_k||_2^2\}} \right\}
\]

\[
= \lim_{k \to \infty} \min_{\kappa \in \mathbb{R}} \left\{ \left(\frac{\gamma_p}{\kappa_p}\right) ||g_k||_2^2, \frac{\left(\frac{\gamma_p}{\kappa_p}\right)^2 ||g_k||_2^4}{L||p_k + d_k||_2^2 + \eta \min\{0, \lambda_k||p_k + d_k||_2^2\}} \right\}.
\]

If we assume that \(\{g_k\}\) is uniformly bounded and that \(\{\lambda_k\}\) is uniformly bounded from below, then it follows from (17) and (19) that \(\{||p_k||_2^2\}\) and \(\{||d_k||_2^2\}\) are uniformly bounded, which in turn imply that there exists a number \(M_1 \in (0, \infty)\) such that

\[
L||p_k + d_k||_2^2 + \eta \min\{0, \lambda_k||p_k + d_k||_2^2\} \leq M_1 \quad \text{for all } k.
\]

Combining this with the above limit shows that

\[
\lim_{k \to \infty} ||g_k||_2 = 0.
\]
We know from the previous limit and (17) that
\[
\lim_{k \to \infty} \|g_k\|_2 = 0 \quad \text{and} \quad \lim_{k \to \infty} \|p_k\|_2 = 0
\] (44)
which is the first main result that we wish to prove.

Next, it follows from (41) and (43) that
\[
0 = \lim_{k \to \infty} \min \left\{ \left| \min\{0, \phi''_k(0)\} \right|, \frac{\left| \min\{0, \phi''_k(0)\} \right|^3}{(\sigma_k, 0)^2} \right\}
\]
\[
= \lim_{k \to \infty} \min \left\{ \left| \min\{0, (p_k + d_k)^T H_k(p_k + d_k)\} \right|, \frac{\left| \min\{0, (p_k + d_k)^T H_k(p_k + d_k)\} \right|^3}{\sigma^2 \|p_k + d_k\|_2^6} \right\}
\]
Using, again, the uniform boundedness of \(\{p_k\} \) and \(\{d_k\} \) we know that there exists a constant \(M_2 \in (0, \infty) \) such that
\[
\sigma^2 \|p_k + d_k\|_2^6 \leq M_2 \quad \text{for all } k.
\]
Combining this with the above limit gives
\[
0 = \lim_{k \to \infty} \min \left\{ \left| \min\{0, (p_k + d_k)^T H_k(p_k + d_k)\} \right|, \frac{\left| \min\{0, (p_k + d_k)^T H_k(p_k + d_k)\} \right|^3}{M_2} \right\}
\]
We now aim to prove that
\[
\lim_{k \to \infty} \|d_k\|_2 = 0. \tag{45}
\]
For a proof by contradiction, suppose that there exists a scalar \(\epsilon > 0 \) such that the set
\[
\mathcal{D} := \{ k : \|d_k\|_2 \geq \epsilon \}
\]
is infinite. Observe from (19) and the definition of \(\mathcal{D} \) that
\[
\epsilon \leq \|d_k\|_2 \leq -\kappa_d \lambda_k \quad \text{for all } k \in \mathcal{D}
\]
which may be combined with (18) and the definition of \(\mathcal{D} \) to conclude that
\[
d_k^T H_k d_k \leq \gamma_d \lambda_k \|d_k\|_2^2 \leq \gamma_d \lambda_k \epsilon^2 \leq -\left(\frac{\gamma_d}{\kappa_d} \right) \epsilon^3 < 0 \quad \text{for all } k \in \mathcal{D}.
\]
(46)

If we assume that \(\{H_k\} \) is uniformly bounded, then the previous inequality may be combined with (44) to show that
\[
(p_k + d_k)^T H_k (p_k + d_k) \leq \frac{1}{2} d_k^T H_k d_k < 0 \quad \text{for all sufficiently large } k \in \mathcal{D}.
\]
Combining this with the limit on the previous slide and (46) shows that
\[
0 = \lim \min_{k \in \mathcal{D}} \left\{ \left| \min\{0, \frac{1}{2} d_k^T H_k d_k\} \right|, \frac{\left| \min\{0, \frac{1}{2} d_k^T H_k d_k\} \right|^3}{M_2} \right\}
= \lim \min_{k \in \mathcal{D}} \left\{ \left| \min\{0, -\frac{1}{2} \left(\frac{\gamma_d}{\kappa_d} \right) \epsilon^3\} \right|, \frac{\left| \min\{0, -\frac{1}{2} \left(\frac{\gamma_d}{\kappa_d} \right) \epsilon^3\} \right|^3}{M_2} \right\}
= \lim \min_{k \in \mathcal{D}} \left\{ \frac{1}{2} \left(\frac{\gamma_d}{\kappa_d} \right) \epsilon^3, \frac{\left[\frac{1}{2} \left(\frac{\gamma_d}{\kappa_d} \right) \epsilon^3 \right]^3}{M_2} \right\} = \min \left\{ \frac{1}{2} \left(\frac{\gamma_d}{\kappa_d} \right) \epsilon^3, \frac{\left[\frac{1}{2} \left(\frac{\gamma_d}{\kappa_d} \right) \epsilon^3 \right]^3}{M_2} \right\} > 0
\]
which is a contradiction. Thus, we have proved that (45) holds.
Next, it follows from (45) and (19) that

$$\lim_{k \to \infty} \left| \min\{0, \lambda_k\} \right| = 0$$

which means that

$$\liminf_{k \to \infty} \lambda_k \geq 0$$

thus giving our second desired result.

We have proved the following result.
Theorem 14

Let the following assumptions on the objective function and iterates hold:

- \(f \) is twice continuously differentiable;
- \(\nabla f \) and \(\nabla^2 f \) are both Lipschitz continuous; and
- the sequences \(\{g_k\} \) and \(\{H_k\} \) are uniformly bounded.

If the weighting functions
\[
\omega_{k,p}(\alpha) = \omega_{k,d}(\alpha) = \alpha
\]
are used for all \(k \), then one of the following outcomes must hold for Algorithm 3:

(i) finite termination, i.e., there exists an iterate \(x_k \) such that
\[
g_k = 0 \quad \text{and} \quad \lambda_k \geq 0
\]

(ii) unbounded objective, i.e.,
\[
\lim_{k \to \infty} f(x_k) = -\infty
\]

(iii) second-order optimality in the limit, i.e, the iterates satisfy
\[
\lim_{k \to \infty} \|g_k\|_2 = 0 \quad \text{and} \quad \liminf_{k \to \infty} \lambda_k \geq 0
\]

so that limit points of \(\{x_k\} \) satisfy second-order necessarily optimality conditions.

Proof: The proof is given by our previous discussion.
1 Introduction

2 Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3 Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4 Trust-Region Methods

5 Conclusions and Final Thoughts
Maybe next year . . . but for now you can see [1]!
Outline

1 Introduction

2 Fixed Step Size Algorithms
 - Convergence to first-order solutions
 - Convergence to second-order solutions

3 Line Search Methods
 - Introduction
 - Algorithmic framework
 - Analysis of the framework
 - An algorithmic instance: equal weighting

4 Trust-Region Methods

5 Conclusions and Final Thoughts
Final comments

- Fixed step size approach can ensure limit points satisfy second-order optimality.
- Relatively little research has focused on second-order methods.
 - They have a stronger convergence theory.
 - Extra expense to compute negative curvature direction d_k.
 - Little empirical gain (if any) in reducing the number of iterations.
 - More research is needed, in my opinion.

- Is it worth it to computing a direction of negative curvature?
 - Many (most?) optimization experts would say no!
 - Personally, I am not sure, but I agree that current methods do not benefit enough from negative curvature directions to justify their use.
 - I believe we need better methods. How? This is ongoing research!

- Fixed step size can be quite powerful if the global Lipschitz constant is similar in size to the local Lipschitz constants encountered over the sequence $\{x_k\}$.

- Curvilinear searches are rarely used in practice. Empirical performance gains are minimal or altogether missing.
