AMS 550.666: Combinatorial Optimization
Homework Problems - Week VIII

1. A company sets an auction for N objects. Bidders place their bids for some subsets of the N objects that they like. The auction house has received n bids, namely bids b_j for subset S_j, for $j = 1, \ldots, n$. The auction house is faced with the problem of choosing the winning bids so that profit is maximized and each of the N objects is given to at most one bidder. Formulate the optimization problem faced by the auction house as an integer programming problem.

[Adapted from Problem 2.16 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

2. Jobs $\{1, \ldots, n\}$ must be processed on a single machine. Each job is available for processing after a certain time, called release time. For each job we are given its release time r_i, its processing time p_i and its weight w_i. Formulate as an integer linear program the problem of sequencing the jobs without overlap or interruption so that the sum of the weighted completion times is minimized.

[Problem 2.17 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

3. A firm is considering project A, B, \ldots, H. Using binary variables x_a, \ldots, x_h and linear constraints, model the following conditions on the projects to be undertaken.

(a) At most one of A, B, \ldots, H.
(b) Exactly two of A, B, \ldots, H.
(c) A or B.
(d) A and B.
(e) If A then B.
(f) If A then not B.
(g) If not A then B.
(h) If A then B, and if B then A.
(i) If A then B and C.
(j) If A then B or C.
(k) If B or C then A.
(l) If B and C then A.
(m) If two or more of B, C, D, E then A.
(n) If m or more than n projects B, \ldots, H then A.

[Problem 2.19 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

4. For the following subsets of edges of an undirected graph $G = (V, E)$, we view the following sets as $(0, 1)$ vectors in $\mathbb{R}^{|E|}$ in the standard way. Find an integer programming formulation and prove its correctness:

(a) The family of Hamiltonian paths of G with endnodes u, v. (A Hamiltonian path is a path that goes exactly once through each node/vertex of the graph.)
(b) The family of all Hamiltonian paths of G.
(c) The family of edge sets that induce a triangle of G.
(d) Assuming that G has $3n$ nodes, the family of n node-disjoint triangles.

(e) The family of odd cycles of G.

Research question: For each problem above, is it possible to find a formulation using polynomially many inequalities (in the size of the graph G), or show that no such formulation exists?

[Problem 2.21 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

5. (Playing with $(0,1)$-vectors). Find integer programming formulations for the following integer sets.

(a) The set of all $(0,1)$-vectors in \mathbb{R}^4 except \[
\begin{pmatrix}
0 \\
1 \\
1 \\
0
\end{pmatrix}.
\]

(b) The set of all $(0,1)$-vectors in \mathbb{R}^6 except \[
\left\{ \begin{pmatrix}
0 \\
1 \\
1 \\
0 \\
1 \\
1
\end{pmatrix}, \begin{pmatrix}
0 \\
1 \\
0 \\
1 \\
1 \\
0
\end{pmatrix}, \begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{pmatrix} \right\}.
\]

(c) The set of all $(0,1)$-vectors in \mathbb{R}^6 except all the vectors having exactly two 1s in the first 3 components and one 1 in the last 3 components.

(d) The set of all $(0,1)$-vectors in \mathbb{R}^n with an even number of 1s. You don’t have to find a system with $\text{poly}(n)$ inequalities.

(e) The set of all $(0,1)$-vectors in \mathbb{R}^n with an odd number of 1s. You don’t have to find a system with $\text{poly}(n)$ inequalities.

Research question: For problems (d) and (e), is it possible to find a formulation using $\text{poly}(n)$ many inequalities, or show that no such formulation exists?

[Adapted from Problem 2.27 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]