1. A company sets an auction for N objects. Bidders place their bids for some subsets of the N objects that they like. The auction house has received n bids, namely bids b_j for subset S_j, for $j = 1, \ldots, n$. The auction house is faced with the problem of choosing the winning bids so that profit is maximized and each of the N objects is given to at most one bidder. Formulate the optimization problem faced by the auction house as an integer programming problem.

[Introduced from Problem 2.16 from the “Integer Programming” textbook by Conforti, Cornuèjols and Zambelli.]

Introduce a binary variable x_j for each bidder $j = 1, \ldots, n$ indicating whether the bidder was assigned his subset or not. The problem can then be solved by the following integer program:

\[
\begin{align*}
\text{max} & \quad \sum_{j=1}^{n} b_j x_j \\
\text{subject to} & \quad \sum_{j \in S_i} x_j \leq 1 \quad i = 1, \ldots, N \\
& \quad x_i \leq 1 \quad i = 1, \ldots, N \\
& \quad x_i \geq 0 \quad i = 1, \ldots, N \\
& \quad x_i \in \mathbb{Z} \quad i = 1, \ldots, N
\end{align*}
\]

2. Jobs $\{1, \ldots, n\}$ must be processed on a single machine. Each job is available for processing after a certain time, called release time. For each job we are given its release time r_i, its processing time p_i and its weight w_i. Formulate as an integer linear program the problem of sequencing the jobs without overlap or interruption so that the sum of the weighted completion times is minimized.

[Problem 2.17 from the “Integer Programming” textbook by Conforti, Cornuèjols and Zambelli.]

Solution: For every pair of $i < j$ of jobs, introduce a binary variable x_{ij} which is 1 if job i is processed before job j, and 0 otherwise. We also introduce a continuous variable s_j, $j = 1, \ldots, n$, which indicates the start time of job j.

The problem can then be solved by the following integer program:

\[
\begin{align*}
\text{max} & \quad \sum_{i=1}^{n} w_i (s_i + p_i) \\
\text{subject to} & \quad s_i \geq r_i \quad \forall \ i = 1, \ldots, n \\
& \quad s_i + p_i \leq s_j + p_j + M(1 - x_{ij}) \quad \forall \ i < j \\
& \quad s_j + p_j \leq s_i + p_i + M x_{ij} \quad \forall \ i < j \\
& \quad x_{ij} \leq 1 \quad \forall \ i < j \\
& \quad x_{ij} \geq 0 \quad \forall \ i < j \\
& \quad x_{ij} \in \mathbb{Z} \quad \forall \ i < j
\end{align*}
\]

where M is a sufficiently large integer, such as $M = \sum_i (r_i + p_i)$.

3. A firm is considering project A, B, \ldots, H. Using binary variables x_a, \ldots, x_h and linear constraints, model the following conditions on the projects to be undertaken.

(a) At most one of A, B, \ldots, H.
(b) Exactly two of A, B, \ldots, H.
(c) A or B.
(d) A and B.
(e) If A then B.

(f) If A then not B.
(g) If not A then B.
(h) If A then B, and if B then A.
(i) If A then B and C.
(j) If A then B or C.
(k) If B or C then A.
(l) If B and C then A.
(m) If two or more of B, C, D, E then A.
(n) If m or more than n projects $B, . . . , H$ then A.

[Problem 2.19 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

Solution:

(a) $x_a + x_b + \ldots + x_h \leq 1$.
(b) $x_a + x_b + \ldots + x_h = 2$.
(c) $x_a + x_b \geq 1$.
(d) $x_a + x_b \geq 2$.
(e) $x_a \leq x_b$.
(f) $x_a + x_b \leq 1$.
(g) $x_a + x_b \geq 1$.
(h) $x_a = x_b$.
(i) $x_b + x_c \geq 2x_a$.
(j) $x_b + x_c \geq x_a$.
(k) $x_b \leq x_a, x_c \leq x_a$.
(l) $1 + x_a \geq x_b + x_c$.
(m) $1 + x_a \geq x_i + x_j$, for all $i, j \in \{b, c, d, e\}$.
(n) $n - 1 + x_a \geq \sum_{i \in S} x_i$ \quad \forall $S \subseteq \{B, C, \ldots, H\}$ such that $|S| = n$

4. For the following subsets of edges of an undirected graph $G = (V, E)$, we view the following sets as $(0, 1)$ vectors in $\mathbb{R}^{|E|}$ in the standard way. Find an integer programming formulation and prove its correctness:

(a) The family of Hamiltonian paths of G with endnodes u, v. (A Hamiltonian path is a path that goes exactly once through each node/vertex of the graph.)

Solution: $\sum_{e \in \delta(x)} x_e = 2$ for all $x \neq u, v$,
$\sum_{e \in \delta(x)} x_e = 1$ for all $x = u, v$,
$\sum_{e \in \delta(S)} x_e \geq 1$ for all $S \subseteq V$.

(b) The family of all Hamiltonian paths of G.

Solution: $\sum_{e \in \delta(x)} x_e \leq 2$ for all $x \neq u, v$,
$\sum_{e \in E} x_e = n - 1$,
$\sum_{e \in \delta(S)} x_e \geq 1$ for all $S \subseteq V$.

The last two set of constraints impose the condition that we have a spanning tree: the second constraint imposes that we have $n - 1$ edges, and the third constraint imposes that we have a connected subgraph.
(c) The family of edge sets that induce a triangle of G.
Solution:
\[\sum_{e \in E} x_e = 3, \]
For every triangle T in G with edges x_i, x_j, x_k, put the constraint $1 + x_i \geq x_j + x_k$ with all permutations of i, j, k.

(d) Assuming that G has $3n$ nodes, the family of n node-disjoint triangles.
Solution:
\[\sum_{e \in E} x_e = 3n, \]
For every triangle T in G with edges x_i, x_j, x_k, put the constraint $1 + x_i \geq x_j + x_k$ with all permutations of i, j, k.

(e) The family of odd cycles of G.
Solution: Observe that for any $0-1$ vector $y \in \mathbb{R}^n$, the constraint \[\sum_{i=1}^{n} (y_i - \frac{1}{2})(x_i - \frac{1}{2}) \leq n/4, \] as a constraint on the variables x_1, \ldots, x_n, is satisfied by all $0-1$ vectors except $x = y$. Thus, for every $0-1$ vector $y \in \mathbb{R}^{|E|}$ that is not an odd cycle, we impose the constraint that \[\sum_{e}(y_e - \frac{1}{2})(x_e - \frac{1}{2}) \leq |E|/4. \]

Research question: For each problem above, is it possible to find a formulation using polynomially many inequalities (in the size of the graph G), or show that no such formulation exists?
[Problem 2.21 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

5. (Playing with $(0,1)$-vectors). Find integer programming formulations for the following integer sets.

(a) The set of all $(0,1)$-vectors in \mathbb{R}^4 except \[
\begin{pmatrix}
0 \\
1 \\
1 \\
0
\end{pmatrix}.
\]

(b) The set of all $(0,1)$-vectors in \mathbb{R}^6 except \[
\left\{
\begin{pmatrix}
0 \\
1 \\
1 \\
0 \\
1 \\
0
\end{pmatrix},
\begin{pmatrix}
0 \\
1 \\
1 \\
0 \\
1 \\
1
\end{pmatrix},
\begin{pmatrix}
1 \\
0 \\
1 \\
0 \\
1 \\
1
\end{pmatrix}
\right\}.
\]

(c) The set of all $(0,1)$-vectors in \mathbb{R}^6 except all the vectors having exactly two 1s in the first 3 components and one 1 in the last 3 components.

(d) The set of all $(0,1)$-vectors in \mathbb{R}^n with an even number of 1s. You don’t have to find a system with $\text{poly}(n)$ inequalities.

(e) The set of all $(0,1)$-vectors in \mathbb{R}^n with an odd number of 1s. You don’t have to find a system with $\text{poly}(n)$ inequalities.

Research question: For problems (d) and (e), is it possible to find a formulation using $\text{poly}(n)$ many inequalities, or show that no such formulation exists?
[Adapted from Problem 2.27 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

Solution: All of the above problems can be solved using the principle observed in Problem 4(e) above: For any $0-1$ vector $y \in \mathbb{R}^n$, the constraint \[\sum_{i=1}^{n} (y_i - \frac{1}{2})(x_i - \frac{1}{2}) \leq n/4, \] as a constraint on the variables x_1, \ldots, x_n, is satisfied by all $0-1$ vectors except $x = y$.
