1. Let $G = (V, E)$ be a graph. Consider variables x_e associated with each edge $e \in E$. Let $P(G)$ be the polytope given by:

$$
\sum_{e \in \delta(v)} x_e \leq 1 \quad \forall v \in V \\
\sum_{e \in E} x_e \geq 0 \quad \forall e \in E
$$

We showed in class that if G is bipartite, then all vertices of $P(G)$ are integral by the TUM property of the constraint matrix. Show the converse that if G is not bipartite, then there exists a non integral vertex.

2. (i) Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rational entries and $b \in \mathbb{R}^m$ be a vector with rational coordinates. Show that every vertex of the polyhedron \{ $x \in \mathbb{R}^n$: $Ax \leq b$ \} has rational coordinates. [Hint: Use the characterization of vertices in terms of the rank of the tight constraints.]

(ii) Let $p^1, \ldots, p^k, v \in \mathbb{R}^n$ be vectors with rational coordinates such that v is in the convex hull of \{ p^1, \ldots, p^k \}. Show that there exists rational coefficients $\lambda_1, \ldots, \lambda_k \geq 0$ with $\sum_i \lambda_i = 1$ and $v = \lambda_1 p^1 + \ldots + \lambda_k p^k$. [Hint: Show that the set of all such coefficients forms a polyhedron in $(\lambda_1, \ldots, \lambda_k) \in \mathbb{R}^k$ space and use part (i).]

3. In class, we showed that given a graph G, the convex hull of all 0/1 perfect matching vectors is given by

$$
Q(G) := \left\{ x \in \mathbb{R}^E : \begin{array}{l}
\sum_{e \in \delta(v)} x_e = 1 \quad \forall v \in V \\
\sum_{e \in E[S]} x_e \leq \frac{|S| - 1}{2} \quad \forall S \subseteq V \text{ such that } |S| \text{ is odd} \\
x_e \geq 0 \quad \forall e \in E
\end{array} \right\}
$$

Recall the construction from class that reduces the general matching problem to a perfect matching problem: Given any graph G, one creates a new graph \tilde{G} by making two copies of G and adding edges between corresponding vertices in the two copies. Recall also that we defined $P_{\text{matching}}(G)$ be the polyhedron obtained by replacing the equality constraints above by $\sum_{e \in \delta(v)} x_e \leq 1$. Finally, we related $P_{\text{matching}}(G)$ and $Q(\tilde{G})$ by the following construction: given $\bar{x} \in P_{\text{matching}}(G)$, we create \tilde{x} by assigning the x values on edges in the two copies of G and for every vertex v of G, assign $1 - \sum_{e \in \delta(v)} \bar{x}_e$ as the value of \tilde{x} to the edge in \tilde{G} joining the two copies of the vertex v.

Show that with this construction $\tilde{x} \in Q(\tilde{G})$.

4. Given an undirected graph, a clique is a subgraph that is complete, i.e. all pairs of vertices in the subgraph have an edge between them. In other words, a clique is given by a subset of the vertices that are all connected to each other by edges.

Write an integer program to find the largest clique (in terms of number of vertices) in a graph $G = (V, E)$. Let $G' = (V, E')$ be the graph on the same set of vertices V such that $ij \in E'$ if and only if $ij \not\in E$. Interpret the dual of the LP relaxation of the largest clique IP for G in terms of G'.

5. A company sets an auction for N objects. Bidders place their bids for some subsets of the N objects that they like. The auction house has received n bids, namely bids b_j for subset S_j, for $j = 1, \ldots, n$. The auction house is faced with the problem of choosing the winning bids so
that profit is maximized and each of the \(N \) objects is given to at most one bidder. Formulate the optimization problem faced by the auction house as an integer programming problem.

[Adapted from Problem 2.16 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

6. Jobs \(\{1, \ldots, n\} \) must be processed on a single machine. Each job is available for processing after a certain time, called release time. For each job we are given its release time \(r_i \), its processing time \(p_i \) and its weight \(w_i \). Formulate as an integer linear program the problem of sequencing the jobs without overlap or interruption so that the sum of the weighted completion times is minimized.

[Problem 2.17 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

7. A firm is considering project \(A, B, \ldots, H \). Using binary variables \(x_a, \ldots, x_h \) and linear constraints, model the following conditions on the projects to be undertaken.

 (a) At most one of \(A, B, \ldots, H \).
 (b) Exactly two of \(A, B, \ldots, H \).
 (c) \(A \) or \(B \).
 (d) \(A \) and \(B \).
 (e) If \(A \) then \(B \).
 (f) If \(A \) then not \(B \).
 (g) If not \(A \) then \(B \).
 (h) If \(A \) then \(B \), and if \(B \) then \(A \).
 (i) If \(A \) then \(B \) and \(C \).
 (j) If \(A \) then \(B \) or \(C \).
 (k) If \(B \) or \(C \) then \(A \).
 (l) If \(B \) and \(C \) then \(A \).
 (m) If two or more of \(B, C, D, E \) then \(A \).
 (n) If more than \(n \) projects \(B, \ldots, H \) then \(A \).

[Problem 2.19 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

8. For the following subsets of edges of an undirected graph \(G = (V,E) \), we view the following sets as \((0,1)\) vectors in \(\mathbb{R}^{|E|} \) in the standard way. Find an integer programming formulation and prove its correctness:

 (a) The family of Hamiltonian paths of \(G \) with endnodes \(u, v \). (A Hamiltonian path is a path that goes exactly once through each node/vertex of the graph.)
 (b) The family of all Hamiltonian paths of \(G \).
 (c) The family of edge sets that induce a triangle of \(G \).
 (d) Assuming that \(G \) has \(3n \) nodes, the family of \(n \) node-disjoint triangles.
 (e) The family of odd cycles of \(G \).
Research question: For each problem above, is it possible to find a formulation using polynomially many inequalities (in the size of the graph \(G \)), or show that no such formulation exists?

[Problem 2.21 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]

9. (Playing with \((0,1)\)-vectors). Find integer programming formulations for the following integer sets.

(a) The set of all \((0,1)\)-vectors in \(\mathbb{R}^4 \) except \[
\begin{pmatrix}
0 \\
1 \\
1 \\
0
\end{pmatrix}.
\]

(b) The set of all \((0,1)\)-vectors in \(\mathbb{R}^6 \) except \[
\left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}.
\]

(c) The set of all \((0,1)\)-vectors in \(\mathbb{R}^6 \) except all the vectors having exactly two 1s in the first 3 components and one 1 in the last 3 components.

(d) The set of all \((0,1)\)-vectors in \(\mathbb{R}^n \) with an even number of 1s. You don’t have to find a system with \(\text{poly}(n) \) inequalities.

(e) The set of all \((0,1)\)-vectors in \(\mathbb{R}^n \) with an odd number of 1s. You don’t have to find a system with \(\text{poly}(n) \) inequalities.

Research question: For problems (d) and (e), is it possible to find a formulation using \(\text{poly}(n) \) many inequalities, or show that no such formulation exists?

[Adapted from Problem 2.27 from the “Integer Programming” textbook by Conforti, Cornuéjols and Zambelli.]