1. (Problem 6.36 in textbook) Consider the integer program for the stable set problem in a graph $G = (V, E)$:

$$\begin{align*}
\text{max} & \quad \sum_{v \in V} z_v \\
\text{subject to} & \quad z_v + z_w \leq 1 \quad \forall v, w \in V \text{ such that } vw \in E \\
& \quad z_v \geq 0 \quad \forall v \in V \\
& \quad z_v \in \mathbb{Z} \quad \forall v \in V
\end{align*}$$

Find cutting plane proofs using sequences of C-G cuts (starting from the above system) for the following “combinatorial” family of cutting planes:

(i) Let C be an odd cycle. It is easy to see that the maximum number of vertices from C in a stable set is at most $\frac{|C| - 1}{2}$. Thus, we have the family of “odd cycle inequalities”:

$$\sum_{v \in C} z_v \leq \frac{|C| - 1}{2} \quad \text{for all odd cycles } C.$$

(ii) The following graph is known as a 5-wheel.

![5-wheel graph](image)

We have the “wheel inequalities”: Let W be the node set of a 5-wheel with r as the center node. Then the following is a valid inequality for the integer points $2z_r + \sum_{v \in W \setminus \{r\}} z_v \leq 2$. (Convince yourself of the validity of the inequality using combinatorial arguments first)

(iii) A set of vertices $K \subseteq V$ forms a clique if there is an edge between every pair of vertices in K. Clearly, we can have at most one vertex from any clique; thus, we have the family of “clique” inequalities $\sum_{v \in K} z_v \leq 1$ for all cliques K.

2. The knapsack problem consists of a set of n items with weights a_1, \ldots, a_n. Each item $i \in \{1, \ldots, n\}$ has a value c_i. We have a knapsack that can hold a total weight of at most W. The goal is to find the subset of items with maximum total value that can fit into the knapsack.

One can formulate an integer program for the knapsack problem:

$$\begin{align*}
\text{max} & \quad c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \\
\text{subject to} & \quad a_1 x_1 + a_2 x_2 + \ldots + a_n x_n \leq W \\
& \quad x_i \geq 0 \quad \forall i \in \{1, \ldots, n\} \\
& \quad x_i \leq 1 \quad \forall i \in \{1, \ldots, n\} \\
& \quad x_i \in \mathbb{Z} \quad \forall i \in \{1, \ldots, n\}
\end{align*}$$

We have the family of cutting planes known as “cover inequalities”. Let $C \subseteq \{1, \ldots, n\}$ be a subset such that $\sum_{i \in C} a_i > W$. Then C is called a cover. C is a minimal cover if $C \setminus \{j\}$ is not a cover for every $j \in C$. For every minimal cover C, a feasible solution can pick at most $|C| - 1$ items from the set C. Thus, the following inequality is valid: $\sum_{i \in C} x_i \leq |C| - 1$ for every minimal cover C. Show how to obtain the cover inequalities as CG cuts starting from the system above.
Chvátal-Gomory Closures. Suppose P is a rational polytope, i.e., $P = \{ x \in \mathbb{R}^n : Ax \leq b \}$ for some rational A, b. The minimum natural number k such that $P^{(k)} = P_I$ is called the Chvátal closure rank of P.

(i) (Problem 6.32 from textbook) Let k be a positive integer and let

$$\text{conv}(\{(0, 0), (1, 0), (\frac{1}{2}, k)\}) \subseteq \mathbb{R}^2.$$

Show that the Chvátal closure rank of P is at least k. [Hint: Induction on k]

(ii) What is Chvátal rank of the odd set inequalities $\sum_{e \in E[S]} x_e \leq (|S| - 1)/2 \ (|S| \text{ odd})$ for the matching polytope?