AMS 553.766: Combinatorial Optimization

Homework Problems - Week V

For the following problems, \(A \in \mathbb{R}^{m \times n} \) will be \(m \times n \) matrices, and \(b \in \mathbb{R}^m \). An affine subspace is the set of solutions to a a system of linear equations, i.e., \(\{ x \in \mathbb{R}^n : Ax = b \} \) is an affine subspace of \(\mathbb{R}^n \). A polytope is a bounded polyhedron.

1. Show the following:

 (i) The intersection of an affine subspace with a polyhedron is a polyhedron.

 (ii) Let \(P_1, P_2 \) be two polytopes. Define \(C = \{ x + y : x \in P_1, y \in P_2 \} \). Show that \(C \) is a polytope.

 (iii) The intersection of two polyhedra is a polyhedron. Thus, show that the intersection of a polyhedron with a polytope is a polytope.

 (iv) Let \(T : \mathbb{R}^n \to \mathbb{R}^d \) be a linear map. Show that if \(P \subseteq \mathbb{R}^n \) is a polytope, then \(T(P) \) is a polytope in \(\mathbb{R}^d \).

 [You may quote the Minkowski-Weyl theorem without proof.]

2. (Problems 2.15, 2.16, 2.17 from Lex Schrijver’s notes) Prove the following Farkas’ type results.

 (i) Prove that there is no solution to \(Ax \leq b \) if and only if there exists \(y \geq 0 \) such that \(y^T A = 0 \) and \(y^T b < 0 \).

 (ii) Prove that there exists \(x \geq 0 \) satisfying \(Ax \leq b \) if and only if for each \(y \geq 0, y^T A \geq 0 \Rightarrow y^T b \geq 0 \).

 (iii) Prove that there exists \(x > 0 \) satisfying \(Ax = 0 \) if and only if for each \(y \in \mathbb{R}^m, y^T A \geq 0 \Rightarrow y^T A = 0 \).

 (iv) Prove that there exists \(x \neq 0 \) satisfying \(x \geq 0 \) and \(Ax = 0 \) if and only if there is no vector \(y \in \mathbb{R}^m \) satisfying \(y^T A > 0 \).

3. (Complementary slackness) Let \(x^* \in \mathbb{R}^n \) be an optimal solution to the problem \(\max \{ c^T x : Ax \leq b \} \) and \(y^* \in \mathbb{R}^m \) be an optimal solution to the problem \(\max \{ y^T b : y^T A = c^T, y \geq 0 \} \).

 Show that for every \(i = 1, \ldots, m \) either \(a_i \cdot x^* = b_i \) or \(y_i^* = 0 \) (or both). (Here \(a_i \) denotes the \(i \)-th row of \(A \) and \(b_i \) is the \(i \)-th component of \(b \).) [Hint: consider the vector \((y^*)^T (Ax^* - b) \)]

 The theorem is saying that in an optimal primal-dual pair of solutions for an LP, either a constraint is tight at the optimal primal solution or the corresponding dual multiplier is 0.

4. Let \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \) be a nonempty polyhedron. Let \(C = \{ r \in \mathbb{R}^n : x + \lambda r \in P \text{ for all } x \in P, \lambda \in \mathbb{R}_+ \} \) where \(\mathbb{R}_+ \) is the set of nonnegative real numbers. Show that

 (i) \(C \) is a convex cone, i.e., for any \(r^1, r^2 \in C \) and \(\lambda_1, \lambda_2 \geq 0 \), we have \(\lambda_1 r^1 + \lambda_2 r^2 \in C \).

 [This cone is called the recession cone of the polyhedron \(P \)]

 (ii) \(C = \{ r \in \mathbb{R}^n : Ar \leq 0 \} \).

5. Let \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \) be a nonempty polyhedron. Let \(L = \{ r \in \mathbb{R}^n : x + \lambda r \in P \text{ for all } x \in P, \lambda \in \mathbb{R} \} \). Show that

 (i) \(L \) is a linear subspace of \(\mathbb{R}^n \). [This is called the lineality space of the polyhedron \(P \)]

 (ii) \(L = \{ r \in \mathbb{R}^n : Ar = 0 \} \).

6. Using the notation from Problems 5 and 6, show that \(L = C \cap (-C) \). We say that \(P \) is pointed if \(L = \{ 0 \} \). Suppose \(P \neq \emptyset \); show that \(P \) has at least one vertex if and only if \(P \) is pointed.
7. (The Diet Problem) Suppose you want to design a diet for your meals. You have certain food items (e.g., spinach, chicken, rice etc.); let us label these different food types as f_1, \ldots, f_n. You can choose any nonnegative amount of a food item to put in your diet. Each food item has a per unit cost c_1, \ldots, c_n associated with it. You have to meet some nutritional constraints: for example, you must have at least 5g of protein, and at most 40g of protein in the meal. Let us say there are $\{1, \ldots, k\}$ nutritional categories and each category has a lower bound ℓ_i and an upper bound u_i that must be met. Suppose that each unit of food item f_j provides a_{ij} units of nutritional category i. How will you solve the problem of designing a diet satisfying the nutritional demands that has the least cost?

8. (Linear Regression with different objectives) In linear regression, we have a bunch of labeled data points $z^1, \ldots, z^k \in \mathbb{R}^n$ with real valued labels y_1, \ldots, y_k. We want to fit the best linear function to this labeled data. More precisely, we want to find parameters $\beta = (\beta_1, \ldots, \beta_n)$ so as to minimize the errors $|y_j - \sum_{i=1}^n \beta_i z_{ji}|$. The typical objective is the sum of the squares of the errors, i.e., we wish to minimize $\sum_{j=1}^k (y_j - \sum_{i=1}^n \beta_i z_{ji})^2$. Suppose we are interested in the following variant:

Firstly, we don’t want to allow arbitrary values of the parameters; we want more controlled regression. Suppose for each parameter β_i, we have certain preset upper and lower bounds u_i and ℓ_i respectively that we want the parameter to lie within. Also, instead of minimizing the sum of squares, suppose we want to minimize the sum of the absolute values, i.e., minimize $\sum_{j=1}^k |y_j - \sum_{i=1}^n \beta_i z_{ji}|$ subject to these bound constraints on the parameter values (ℓ_1 minimization).

Show how you can formulate this as a linear programming problem. What if you were interested in minimizing the largest error, i.e., minimize $\max_{j \in \{1, \ldots, k\}} |y_j - \sum_{i=1}^n \beta_i z_{ji}|$ (ℓ_∞ minimization)