AMS 550.666: Combinatorial Optimization
Homework Problems - Week V

For any two vectors \(x, y \in \mathbb{R}^d \), \(x \leq y \) means the inequality holds for each component: \(x_i \leq y_i \) for all \(i = 1, \ldots, d \). Similarly, \(x < y \) means \(x_i < y_i \) for all \(i = 1, \ldots, d \).

For the following problems, \(A \in \mathbb{R}^{m \times n} \) is an \(m \times n \) matrix, and \(b \in \mathbb{R}^m \).

1. Let \(X \) be an arbitrary (possibly infinite) subset of \(\mathbb{R}^n \). The convex hull of \(X \), denoted by \(\text{conv}(X) \), is a convex set \(C \) such that \(X \subseteq C \) and for any other convex set \(C' \), \(X \subseteq C' \Rightarrow C \subseteq C' \), i.e., the convex hull is the smallest (with respect to set inclusion) convex set containing \(X \). Show that

\[
\text{conv}(X) = \bigcap \{(C: X \subseteq C, C \text{ convex}) = \{\lambda_1 x_1 + \ldots + \lambda_t x_t : x_1, \ldots, x_t \in X, \lambda_1, \ldots, \lambda_t \geq 0, \sum_{i=1}^t \lambda_i = 1\} \]

Solution: Let \(\hat{C} = \bigcap \{(C : X \subseteq C, C \text{ convex}) \). Consider any other convex set \(C' \) such that \(X \subseteq C' \). Then \(C' \) appears in the intersection, and thus \(\hat{C} \subseteq C' \). Thus, \(\hat{C} = \text{conv}(X) \).

Next, let \(\tilde{C} = \{\lambda_1 x_1 + \ldots + \lambda_t x_t : x_1, \ldots, x_t \in X, \lambda_1, \ldots, \lambda_t \geq 0, \sum_{i=1}^t \lambda_i = 1\} \). Then,

(a) \(\tilde{C} \) is convex. Consider two points \(z_1, z_2 \in \tilde{C} \). Thus there exist two finite index sets \(I_1, I_2 \), two finite subsets of \(X \) given by \(X_1 = \{x_i^1 \in X : i \in I_1\} \) and \(X_2 = \{x_i^2 \in X : i \in I_2\} \), and two subsets of nonnegative real numbers \(\{\lambda_i^1 \geq 0, i \in I_1\}, \{\lambda_i^2 \geq 0, i \in I_2\} \) such that \(\sum_{i \in I_1} \lambda_i^1 = 1 \) for \(j = 1, 2 \), with the following property: \(z_j = \sum_{i \in I_j} \lambda_i^j x_i^j \) for \(j = 1, 2 \). Then for any \(\lambda \in [0, 1] \), \(\lambda z_1 + (1-\lambda) z_2 = \lambda (\sum_{i \in I_1} \lambda_i^1 x_i^1) + (1-\lambda) (\sum_{i \in I_2} \lambda_i^2 x_i^2) \). Consider the finite set \(\tilde{X} = X_1 \cup X_2 \), and for each \(x \in \tilde{X} \), if \(x = x_i \in X_1 \) with \(i \in I_1 \) let \(\mu_x = \lambda \cdot \lambda_i^1 \), and if \(x = x_i \in X_2 \) with \(i \in I_2 \), let \(\mu_x = (1-\lambda) \cdot \lambda_i^2 \). It is easy to check that \(\sum_{x \in \tilde{X}} \mu_x = 1 \), and \(\lambda z_1 + (1-\lambda) z_2 = \sum_{x \in \tilde{X}} \mu_x x \). Thus, \(\tilde{C} = \{x \in \tilde{X} : x \in \tilde{C}\} \).

(b) \(X \subseteq \hat{C} \). We simply use \(\lambda = 1 \) as the multiplier for a point from \(X \).

(c) Let \(C' \) be any convex set such that \(X \subseteq C' \). Since \(C' \) is convex, every point of the form \(\lambda_1 x_1 + \ldots + \lambda_t x_t \) where \(x_1, \ldots, x_t \in X, \lambda_i \geq 0, \sum_{i=1}^t \lambda_i = 1 \) belongs to \(C' \). Thus, \(\hat{C} \subseteq C' \).

From (a), (b) and (c), we get that \(\hat{C} = \text{conv}(X) \).

2. (Problem 2.2 in Schrijver’s notes) Let \(C \) be a convex set in \(\mathbb{R}^n \), and let \(A \) be any \(m \times n \) matrix. Show that the set \(\{Ax : x \in C\} \) is convex. [Thus, convexity is preserved under linear transformations.] Let \(C' \) be a convex set in \(\mathbb{R}^m \). Show that \(\{x \in \mathbb{R}^n : Ax \in C'\} \) is also a convex set.

Solution: Let \(D = \{Ax : x \in C\} \). Consider \(Ax_1, Ax_2 \in D \) for \(x_1, x_2 \in C \). For any \(\lambda \in [0, 1] \), then \(\lambda Ax_1 + (1-\lambda) Ax_2 = A(\lambda x_1 + (1-\lambda) x_2) \). Since \(Ax_1 + (1-\lambda) x_2 \in C \) because \(C \) is convex, by definition \(\lambda Ax_1 + (1-\lambda) Ax_2 \in D \). Thus, \(D \) is convex.

Consider \(D' = \{x : Ax \in C'\} \). Consider \(x_1, x_2 \in D' \). Then \(A(\lambda x_1 + (1-\lambda) x_2) = \lambda Ax_1 + (1-\lambda) Ax_2 \in C' \) since \(Ax_1, Ax_2 \in C' \) and \(C' \) is convex. Thus, \(D' \) is convex.

3. Let \(C \) be a (topologically) closed, convex set. Show that there exists a (potentially infinite) family of halfspaces given by \(c_i^j \in \mathbb{R}^n, \delta_i \in \mathbb{R} \) indexed by \(i \in I \), such that

\[
C = \{x \in \mathbb{R}^n : c_i^j \cdot x \leq \delta_i \ \forall i \in I\}.
\]
4. Let $C \subseteq \mathbb{R}^n$ be a closed convex set. Define $C^* = \{y \in \mathbb{R}^n : y^T \cdot x \leq 1 \ \forall x \in C\}$. This set is called the polar of C. Show that:

(i) C^* is a convex set containing the origin.

Solution: First show C^* is convex. Let $y_1, y_2 \in C^*$; thus,

$$y_j \cdot x \leq 1 \text{ for all } x \in C \text{ and } j = 1, 2 \tag{1}$$

For any $\lambda \in [0, 1]$, consider $\bar{y} = \lambda y_1 + (1-\lambda)y_2$. For any $x \in C$, $\bar{y} \cdot x = (\lambda y_1 + (1-\lambda)y_2) \cdot x = \lambda(y_1 \cdot x) + (1-\lambda)(y_2 \cdot x) \leq \lambda + (1-\lambda) = 1$, where the inequality comes from (1).

Next, since $0 \cdot x = 0 \leq 1$ for all $x \in C$, $0 \in C^*$.

(ii) If $0 \in C$, then $(C^*)^* = C$.

Solution: By definition, $(C^*)^* = \{z \in \mathbb{R}^n : z \cdot y \leq 1, \forall y \in C^*\}$. Clearly, $C \subseteq (C^*)^*$ since for any $x \in C$, $x \cdot y = y \cdot x \leq 1$ for all $y \in C^*$. Consider $x^* \notin C$. By the separating hyperplane theorem, there exists $c \in \mathbb{R}^n$ and $\delta \in \mathbb{R}$ such that $c \cdot x \leq \delta$ for all $x \in C$ and $c \cdot x^* > \delta$. Since $0 \in C$, $0 = c \cdot 0 \leq \delta$. Consider two cases now.

Case 1: $\delta > 0$. Then $\frac{1}{\delta} c \cdot x \leq 1$ for all $x \in C$ and so $\frac{1}{\delta} c \in C^*$, but $x^* \cdot \frac{1}{\delta} c = \frac{1}{\delta} c \cdot x^* > 1$ and so $x^* \notin (C^*)^*$.

Case 2: $\delta = 0$. Let $\mu = \frac{1}{\mu} c \cdot x^* > 0$. Then $\frac{1}{\mu} c \cdot x \leq \frac{1}{\mu} \delta = 0 \leq 1$ for all $x \in C$. Thus, $\frac{1}{\mu} c \in C^*$. However, $\frac{1}{\mu} c \cdot x^* = 2 > 1$. Thus, $x^* \cdot \frac{1}{\mu} c > 1$ and so $x^* \notin (C^*)^*$.

Thus, in both cases, $x^* \notin (C^*)^*$ and so $(C^*)^* \subseteq C$.

5. Suppose there exists $x \in \mathbb{R}^n$ such that $Ax < b$. Show that P is full-dimensional, i.e., dimension of P equals n.

Solution: Let e^1, \ldots, e^n be the standard unit vectors in \mathbb{R}^n. We will show that there exists $\epsilon > 0$ such that $\{x, x + \epsilon e^1, x + \epsilon e^2, \ldots, x + \epsilon e^n\} \subseteq P$. Since these are $n+1$ affinely independent points, this will show P has dimension n.

For every $j \in \{1, \ldots, n\}$, define

$$\epsilon_j = \min_{i \in \{1, \ldots, m\}} \{ \frac{b_i - a_i \cdot x}{a_i \cdot e_j} : a_i \cdot e_j > 0 \}$$

Observe that each $\epsilon_j > 0$ since $Ax < b$. Let $\epsilon = \min \{\epsilon_1, \epsilon_2, \ldots, \epsilon_n\}$. Consider any $j \in \{1, \ldots, n\}$ and any $i \in \{1, \ldots, m\}$. We will show that $a_i \cdot (x + \epsilon e^j) \leq b_i$. This will complete the proof. If $a_i \cdot e^j \leq 0$, then this is true since $a_i \cdot x \leq b_i$. When $a_i \cdot e^j > 0$,

$$a_i \cdot (x + \epsilon e^j) = a_i \cdot x + \epsilon (a_i \cdot e^j) \leq a_i \cdot x + \frac{b_i - a_i \cdot x}{a_i \cdot e^j} (a_i \cdot e^j) = b_i$$
6. Let \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \). Suppose that for each \(j = 1, \ldots, m \), there exists \(x^j \in P \) such that \(a^j \cdot x^j < b_j \), i.e., for every inequality, there is a point in \(P \) that satisfies this inequality strictly. Show that \(P \) is full-dimensional.

Solution: Consider the point \(x^* = \sum_{j=1}^{m} \frac{1}{m} x^j \). For any \(j^* = 1, \ldots, m \), \(a^{j^*} \cdot x^* = \sum_{j=1}^{m} \frac{1}{m} (a^{j^*} \cdot x^j) \). Since \(x^j \in P \), we have \(a^{j^*} \cdot x^j < b_j \) for \(j \neq j^* \) and \(a^{j^*} \cdot x^{j^*} < b_{j^*} \). Therefore, \(\sum_{j=1}^{m} \frac{1}{m} (a^{j^*} \cdot x^j) < b_{j^*} \). Therefore, \(Ax^* < b \) and by the previous exercise, \(P \) is full dimensional.

7. (Problems 2.15, 2.16, 2.17) Prove the following Farkas’ type results.

(i) Prove that there exists \(x \geq 0 \) satisfying \(Ax \leq b \) if and only if for each \(y \geq 0 \), \(y^T A \geq 0 \Rightarrow y^T b \geq 0 \).

Solution: There exists \(x \geq 0 \) satisfying \(Ax \leq b \) if and only if there is a solution to \(A' \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b \) and \(x, s \geq 0 \), where \(A' = [A \ I] \) where \(I \) is the \(m \times m \) identity matrix.

By Farkas’ Lemma, this system has a solution if and only if there does not exist \(y \in \mathbb{R}^m \) such that \(y^T [A \ I] \geq 0 \) and \(y^T b < 0 \). In other words, \(y^T [A \ I] \geq 0 \Rightarrow y^T b \geq 0 \). Finally, observe that \(y^T [A \ I] \) is simply \(y_1 \geq 0 \).

(ii) Prove that there exists \(x > 0 \) satisfying \(Ax = 0 \) if and only if for each \(y \in \mathbb{R}^m \), \(y^T A \geq 0 \Rightarrow y^T A = 0 \).

Solution: There exists \(x \geq 0 \) satisfying \(Ax \leq b \) if and only if there exists a solution to \(Ax = 0, x \geq 1 \) where \(1 \) is the all one’s vector in \(\mathbb{R}^n \). This is because any \(x > 0 \) with \(Ax = 0 \) can be scaled to get \(\tilde{x} = \frac{1}{\mu}x \) where \(\mu \) is the smallest component of \(x \).

\(Ax = 0, x \geq 1 \) has a solution if and only if \(A' = \begin{bmatrix} A & 0 \\ I & -I \end{bmatrix} \). By Farkas’ lemma, this has a solution if and only if there does not exist \(y \in \mathbb{R}^m, z \in \mathbb{R}^n \) such that \([y \ z]^T A' \geq 0 \) and \(z^T 1 < 0 \). This means there exists no \(y, z \) such that \(y^T A + z \geq 0 \) and \(z \leq 0 \) and \(\sum z_i < 0 \). In other words, any \(y, z \) satisfying \(y^T A + z \geq 0 \) and \(z \leq 0 \) must have \(z = 0 \). This is equivalent to saying that for any \(y \in \mathbb{R}^m, y^T A \geq 0 \) implies \(y^T A = 0 \).

(iii) Prove that there exists \(x \neq 0 \) satisfying \(x \geq 0 \) and \(Ax = 0 \) if and only if there is no vector \(y \in \mathbb{R}^m \) satisfying \(y^T A > 0 \).

Solution: There exists \(x \neq 0 \) satisfying \(x \geq 0 \) and \(Ax = 0 \) if and only if \(Ax = 0, 1^T x = 1, x \geq 0 \) has a solution (by scaling \(x \) by \(\frac{1}{\sum x_i} \)). Thus, by Farkas’ lemma, this happens if and only if there is no \(y \in \mathbb{R}^m, \mu \in \mathbb{R} \) such that \(y^T A + \mu 1^T \geq 0 \) and \(\mu < 0 \). This is equivalent to the existence of \(y \in \mathbb{R}^m \) such that \(y^T A > 0 \).

8. Let \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \) be a nonempty polyhedron. Let \(C = \{ r \in \mathbb{R}^n : x + \lambda r \in P \text{ for all } x \in P, \lambda \in \mathbb{R}_+ \} \) where \(\mathbb{R}_+ \) is the set of nonnegative real numbers. Show that

(i) \(C \) is a convex cone. [This cone is called the recession cone of the polyhedron \(P \)]

(ii) \(C = \{ r \in \mathbb{R}^n : Ar \leq 0 \} \).

Solution:

(i) We need to first verify that \(C \) is convex. Consider any \(r^1, r^2 \in C \) and any \(\mu \in [0, 1] \) and let \(\bar{r} = \mu r^1 + (1 - \mu) r^2 \). For any \(x \in P, \lambda \geq 0 \) \(x + \lambda \bar{r} = x + \lambda \mu r_1 + \lambda (1 - \mu) r_2 \). Since \(r_1 \in C, x + \lambda r_1 \in P \) and since \(r_2 \in C, (x + \lambda r_1) + \lambda (1 - \mu) r_2 \in P \). A very similar argument shows that \(C \) is a cone.

(ii) Consider any \(r \) such that \(Ar \leq 0 \). Then \(A(x + \lambda r) = Ax + \lambda Ar \leq Ax \) for \(\lambda \geq 0 \) and \(Ax \leq b \) if \(x \in P \). Thus, \(A(x + \lambda r) \leq b \) for all \(x \in P \) and \(\lambda \geq 0 \). This shows that
Consider any \(r \) such that \(Ar \not\leq b \). This means, for some \(i = 1, \ldots, m \), \(a^i \cdot r > 0 \). Since \(P \) is nonempty, let \(x \in P \). Since \(a^i \cdot r > 0 \), there exists \(\lambda \geq 0 \) such that \(a^i(x + \lambda r) = a^i \cdot x + \lambda(a^i \cdot r) > b_i \). This shows that \(r \not\in C \). Hence \(C \subseteq \{ r \in \mathbb{R}^n : Ar \leq 0 \} \).

Let \(L = \{ r \in \mathbb{R}^n : x + \lambda r \in P \text{ for all } x \in P, \lambda \in \mathbb{R} \} \). Show that

(i) \(L \) is a linear subspace of \(\mathbb{R}^n \). [This is called the lineality space of the polyhedron \(P \)]

(ii) \(L = \{ r \in \mathbb{R}^n : Ar = 0 \} \).

Solution:

(i) For any \(r_1, r_2 \in L \), \(x + \lambda(r_1 + r_2) = x + \lambda r_1 + \lambda r_2 \). Since \(r_1 \in L \), \(x + \lambda r_1 \in P \) and since \(r_2 \in L \), \((x + \lambda r_1) + \lambda r_2 \in P \). Thus \(r_1 + r_2 \in L \). Similarly, for any \(r \in L \) and \(\mu \in \mathbb{R} \), \(x + \lambda(\mu r) = x + (\lambda \mu)r \in P \) for any \(\lambda \in \mathbb{R} \) since \(r \in L \). Thus, \(\mu r \in L \). Therefore, \(L \) is a linear subspace.

(ii) Proof is similar to the case of the cone.