In the following $G = (V, E)$ is an undirected graph. $\nu(G)$ will denote the size of the maximum matching in G. For a subset $A \subseteq V$, $\text{oc}(V \setminus A)$ denotes the number of odd connected components in $G \setminus A$.

1. (Problem 5.2 from textbook) Let M be a matching in a general graph G and let p be the cardinality of a maximum matching. Show that there are at least $p - |M|$ vertex-disjoint M-augmenting paths.

2. (Problem 5.4 from textbook) Let $p > 0$ be the cardinality of the maximum matching in G, and let M be a matching of cardinality at most $p - \sqrt{p}$. Show that there exists an M-augmenting path having at most \sqrt{p} edges from M.

3. (Problem 5.5 from textbook) Let $G = (V, E)$ be a general graph and $k \leq |V|/2$ be a given positive integer. Construct a graph G' such that G' has a perfect matching if and only if G has a matching of size k.

4. Show that the following two statements are equivalent:
 1. For any graph G, $\nu(G) = \min_{A \subseteq V} \frac{1}{2}(|V| - \text{oc}(V \setminus A) + |A|)$.
 2. For any graph G, G has a perfect matching if and only if for every subset $A \subseteq V$, $\text{oc}(V \setminus A) \leq |A|$.

 [Hint: Use the previous exercise]

We define a vertex v in G to be inessential if there exists a maximum matching M such that v is M-exposed. We say that v is essential if every maximum matching cover v.

5. Recall the Tutte-Berge formula from class: $\nu(G) = \min_{A \subseteq V} \frac{1}{2}(|V| - \text{oc}(V \setminus A) + |A|)$. Let A^* be a minimizer of the right hand side in the Tutte-Berge formula. Show that all vertices in A^* are essential.

6. Let M be a matching (not necessarily maximum) in G, and T be an M-alternating tree. Suppose there is an edge vw such that $v, w \in B(T)$, thus we have an odd cycle C using the edge vw. Let $G' = G \times C$, $M' = M \setminus E(C)$ and $T' = T \times C$. Show the following: i) M' is a matching in G', ii) T' is an M'-alternating tree in G', and iii) $C \in B(T')$.

7. (Problem 5.15 from textbook) Let T_1', \ldots, T_k' be the trees at the termination of the blossom algorithm on G. For any super/pseudo vertex v, let $S(v)$ denote all the original vertices that were shrunk into v (note that the super/pseudo vertex v may correspond to multiple shrinking operations - we are considering ALL the original vertices that went into v in the process of these shrinking operations). Let $B = \bigcup (B(T_i') : i = 1, \ldots, k)$ and let $B' = \bigcup (S(v) : v \in B)$. Prove that B' is exactly the set of inessential vertices of G.

1