In the following $G = (V, E)$ is an undirected graph. $\nu(G)$ will denote the size of the maximum matching in G. For a subset $A \subseteq V$, $oc(V \setminus A)$ denotes the number of odd connected components in $G \setminus A$.

1. (Problem 5.2 from textbook) Let M be a matching in a general graph G and let p be the cardinality of a maximum matching. Show that there are at least $p - |M|$ node-disjoint M-augmenting paths.

Solution: Consider the graph $G' = (V, M \Delta N)$ where N is a maximum matching. Observe that each path in G' can have at most 1 more edge from N compared to M. Since, N has at least $p - |M|$ more edges, there should be at least these many paths in G' with more edges from N. As argued in class, each of these paths is an M-augmenting path.

2. (Problem 5.4 from textbook) Let $p > 0$ be the cardinality of the maximum matching in G, and let M be a matching of cardinality at most $p - \sqrt{p}$. Show that there exists an M-augmenting path having at most \sqrt{p} edges from M.

Solution: Using the previous problem, we have at least $p - |M| \geq p - (p - \sqrt{p}) = \sqrt{p}$ vertex-disjoint M-augmenting paths. If all of these paths have strictly greater than \sqrt{p} edges from M, then M has strictly more than p edges, contradicting that that M has at most $p - \sqrt{p}$ edges.

3. (Problem 5.5 from textbook) Let $G = (V, E)$ be a general graph and $k \leq |V|/2$ be a given positive integer. Construct a graph G' such that G' has a perfect matching (see problem 3 above) if and only if G has a matching of size k.

Solution: G' has is constructed from G be adding a set V_{slack} of $n - 2k$ additional vertices ($n = |V|$). Moreover, we have additional edges from every vertex in V_{slack} to every vertex in V. Now if G has a matching M of size k, then $n - 2k$ vertices in G are unmatched. In G' create a perfect matching by using M and additionally matching the M-exposed vertices from V to V_{slack}. On the other hand, if G' has a perfect matching, then all vertices in V_{slack} are matched, thus $2k$ vertices in V are matched using the original edges, thus giving a matching of size k in G.

4. Show that the following two statements are equivalent:

 1. For any graph G, $\nu(G) = \min_{A \subseteq V} \frac{1}{2}(|V| - oc(V \setminus A) + |A|)$.
 2. For any graph G, G has a perfect matching if and only if for every subset $A \subseteq V$, $oc(V \setminus A) \leq |A|$.

 [Hint: Use the previous exercise]

Solution: (1. \Rightarrow 2.) If G has a perfect matching, then $\nu(G) = |V|/2$ and thus, $|V|/2 = \min_{A \subseteq V} \frac{1}{2}(|V| - oc(V \setminus A) + |A|) \leq \frac{1}{2}(|V| - oc(V \setminus A) + |A|)$ for every subset $A \subseteq V$. Thus, $oc(V \setminus A) \leq A$. On the other hand, if for every subset $A \subseteq V$, $oc(V \setminus A) \leq |A|$, then

$$|V|/2 \leq \min_{A \subseteq V} \frac{1}{2}(|V| - oc(V \setminus A) + |A|) = \nu(G) \leq |V|/2.$$

Thus, all inequalities above must be at equality, showing that $\nu(G) = |V|/2$ and G has a perfect matching.
5. Recall the Tutte-Berge formula from class: $\nu(G) = k$. It suffices to show that there exists a subset $A \subseteq V$ such that $\frac{1}{2}(|V| - oc(V \setminus A) + |A|) \leq k$. Construct a graph $G' = (V' \cup E')$ from G by adding a set V_{slack} of $n - 2(k+1)$ additional vertices ($n = |V|$). Thus, $V' = V \cup V_{slack}$. Moreover, we have additional edges from every vertex in V_{slack} to every vertex in V. Recall that in HW for Week III, Problem 10, it was shown that G has a matching of size $k + 1$ if and only if G' has a perfect matching. Thus, since the maximum matching in G is of size k, G' does not have a perfect matching. So there exists a set $A' \subseteq V \cup V_{slack}$ such that $oc(V' \setminus A') > |A'|$. Since G' has an even number ($2n - 2(k+1)$) of vertices, A' cannot be the empty set. Thus, $oc(V' \setminus A') \geq 2$. Thus, $V_{slack} \subseteq A'$, otherwise, $oc(V' \setminus A') = 1$ since every vertex in V_{slack} is connected to every other vertex in V. Let $A = A' \cap V$. Thus, $oc(V' \setminus A') = oc(V \setminus A)$. Moreover, $|A'| = |A| + |V_{slack}| = |A| + n - 2(k+1)$. Since $oc(V' \setminus A') > |A'|$,

$$
\begin{align*}
oc(V \setminus A) &> |A| + n - 2(k+1) \\
\Rightarrow \quad k + 1 &> \frac{1}{2} (|V| - oc(V \setminus A) + |A|) \\
\Rightarrow \quad k &\geq \frac{1}{2} (|V| - oc(V \setminus A) + |A|)
\end{align*}
$$

The last inequality follows since the RHS is an integer (Why?).

6. Let M be a matching (not necessarily maximum) in G, and T be an M-alternating tree. Suppose there is an edge vw such that $v, w \in B(T)$, thus we have an odd cycle C using the edge vw. Let $G' = G \times C$, $M' = M \setminus E(C)$ and $T' = T \setminus C$. Show the following: i) M' is a matching in G', ii) T' is an M'-alternating tree in G', and iii) $C \in B(T')$.

Solution: Let p be the vertex in C that is closest to the root of T. Note that p belongs to $B(T)$.

Claim 1. $M \cap E(C)$ covers all the vertices in C except p. Moreover, unless p is the root in T, there is an edge in $M \cap E(T)$ that covers p and this edge does not belong to $E(C)$.

Proof. Now every vertex in the path from p to v, except p, is M-covered by an edge from $E(C) \cap E(T)$. Similarly, every vertex in the path from p to w, except p, is also M-covered by an edge from $E(C) \cap E(T)$. Thus, p is the only vertex in C that is not M-covered by an edge from C. The claim about p follows because T is an M-alternating tree.

i) By Claim 1, M has at most 1 edge incident on the vertices of C that does not belong to $E(C)$. Hence, shrinking C cannot create a conflict on C in G' with respect to M'. Therefore, M' is a matching in G'.

ii) We need to verify the following properties :

a) Every node $p' \in T'$ other than the root is covered by an edge of $M' \cap E(T')$.

Suppose $p' = C$. If C is the root in T', then nothing to check. Else, if C is not the root in T', p is not the root in T. By Claim 1, there is a matching edge e in $M \cap E(T)$ that covers p such that $e \notin E(C)$. Thus, $e \in M' \cap E(T')$ and covers $C = p'$.

If $p' \neq C$, then $p' \notin V(C)$. Since T is an M-alternating path, there is an edge $e \in E(T)$ that covers p' in G, so $e \notin E(C)$. Thus, $e \in M' \cap E(T')$ and covers p'.

b) For every node $p' \in T'$, the path in T' from the root of T' to p' is M'-alternating. If the path does not use C in T', then the path is unchanged from T to T'. Since it was M-alternating in T, it is M'-alternating in T'. If the path P does use C, the part of P from the root to C is alternating, since it did not change from T to T'. Moreover, the part of P from C to p' also did not change from T to T' and is therefore M'-alternating. Since, M' is a valid matching from part i), P does alternate at C. Hence, P is M'-alternating.

c) Observe that the distance of C from the root in T' is the same as the distance of p from the root in T. Since $p \in B(T)$, this implies that $C \in B(T')$.

7. (Problem 5.15 from textbook) Let T'_1, \ldots, T'_k be the trees at the termination of the blossom algorithm on G. For any shrunk/pseudo node v, let $S(v)$ denote all the original nodes that were shrunk into v (note that the shrunk/pseudo node v may correspond to multiple shrinking operations - we are considering ALL the original nodes that went into v in the process of these shrinking operations). Let $B = \bigcup (B(T'_i) : i = 1, \ldots, k)$ and $B' = \bigcup (S(v) : v \in B)$. Prove that B' is exactly the set of inessential nodes of G.

Solution:

Observation 1. Let G be any graph and C be an odd cycle C in G. Suppose M' is a matching in $G' = G \times C$ that leaves C exposed. Then for any vertex $v \in C$, there exists a matching M for G such that the number of M'-exposed nodes in G' is equal to the number of M-exposed nodes in G, and v is M-exposed. This can simply be done by adding $(|V(C)| - 1)/2$ matching edges from C that do not touch $v \in C$.

Observation 2. Let G be any graph, M be a matching in G, and T be an M-alternating tree (there are no shrunk nodes in T). Given any vertex $v \in B(T)$, one can change M to a matching M_1 of the same size such that v is M_1-exposed. This can be achieved by considering the path from the root to v, and changing all the matching edges to nonmatching edges and all nonmatching edges to matching edges.

Consider any vertex $u \in B'$. This means there exists $i \in \{1, \ldots, k\}$ such that $u \in S(v)$ for some $v \in B(T'_i)$. Let M' be the “unexpanded” matching found during the execution of the blossom algorithm, that is expanded to give the maximum matching in G. Note that M' leaves the root of T'_i exposed. Thus, by Observation 2, we can change M' to a matching M'' of the same size, and thus leaves the same number of exposed nodes, such that v is M''-exposed. Now v may have been obtained by shrinking many odd cycles in intermediate stages of the algorithm. Let’s call these cycles C_1, C_2, \ldots, C_t (note that many of these cycles may not be odd cycles in the original graph G). Next apply Observation 1 to expand v into C_t to get a matching M that leaves the same number of exposed nodes as M'' (and thus M'), and leaves the pseudonode that contains u exposed (which may be an original node). Iteratively repeating this expansion procedure, adding matching edges from the odd cycle that leave the pseudonode containing u exposed, we can find a matching M in G that leaves the same number of exposed nodes as M', and leaves u exposed. Since the maximum matching M^* output by the Blossom algorithm leaves the same number of exposed nodes as M' (namely k), the size of M equals the size of M^*, and thus M is also a maximum matching that leaves u exposed.
Therefore, all vertices in B' are inessential.

Next we show that all other vertices in $G \setminus B'$ are essential. Any such vertex is either in $A(T'_i)$ for some $i \in \{1, \ldots, k\}$, or is a vertex in the last stage of the Blossom algorithm when all vertices in $D = V \setminus (V(T_1) \cup V(T_2) \cup \ldots \cup V(T_k))$ are matched up. (Here, T_i is the notation introduced in the class for the graph induced by the expanded T'_i). This means that in $G \setminus (A(T'_1) \cup \ldots \cup A(T'_k))$, the vertices in D are partitioned into even components, since no matching edge used in the last stage of the Blossom algorithm is incident on $A = (A(T'_1) \cup \ldots \cup A(T'_k))$. We know that A is a minimizer in the Tutte-Berge formula. Hence, using the result of Problem 3, we find that all vertices in $A \cup D$ are essential.