AMS 553.766: Combinatorial Optimization
Homework Problems - Week X

1. Recall that a subgroup $S \subseteq \mathbb{R}^n$ is a lattice of \mathbb{R}^n, provided that there exists $\epsilon > 0$ such that for any point $y \in S$, $B(y, \epsilon) \cap S = \{y\}$, i.e. the ball centered at y with radius ϵ contains only y from S. Prove that a subgroup S is a lattice if there exists $\epsilon > 0$ such that the ball $B(0, \epsilon)$ centered at 0 with radius ϵ does not contain any non zero elements from S, i.e. $B(0, \epsilon) \cap S = \{0\}$. [In other words, it is enough to check the discreteness condition at the origin only]

2. Let a^1, \ldots, a^k be a set of vectors in \mathbb{R}^n with only rational entries. We do not assume that the vectors are linearly independent or that $k \leq n$. Is it true that the set

$$\Lambda = \{\mu_1 a^1 + \ldots + \mu_k a^k : \mu_1, \ldots, \mu_k \in \mathbb{Z}\}$$

is a lattice of \mathbb{R}^n? [Hint: Think about the denominators of the entries of any vector in the above set.]

3. Hermite Normal Form
All matrices considered in this problem will be assumed to have integer entries. Consider the following elementary column operations for a matrix A.

i. exchanging two columns.

ii. multiplying a column by -1.

iii. adding an integral multiple of one column to another column.

a) Let A be any $d \times k$ matrix and let A' is obtained from A by performing a finite number of sequential elementary operations as above. Show that A can be obtained from A' by performing elementary column operations and $Z(A) = Z(A')$, where $Z(A)$ for any matrix A is defined as the set of $\{\mu_1 a^1 + \ldots + \mu_k a^k : \mu_1, \ldots, \mu_k \in \mathbb{Z}\}$, where a^1, \ldots, a^k are the columns of A.

b) Show that any $d \times k$ integral matrix A with full row rank (so $k \geq d$) can be converted into the form $[B, 0]$ using only the above elementary column operations, such that all of the following hold:

– B is a nonsingular, lower triangular matrix with non-zero entries on the main diagonal.

– B has only nonnegative entries.

– In each row of B there is a unique maximum element, which sits on the main diagonal of B.

$[B, 0]$ is called the Hermite Normal Form (HNF) of A.

c) Let U be a unimodular matrix (recall this means that U is an integral $n \times n$ matrix and has determinant ± 1). Show that the HNF of U is the identity matrix. Conclude that the lattice generated by the columns of a unimodular matrix is \mathbb{Z}^n.

1