AMS 550.666: Combinatorial Optimization
Homework Problems - Week X

1. Subadditive function Cuts
 Recall the family of functions $\phi_f : \mathbb{R} \to \mathbb{R}$ defined in class parameterized by $f \in (0, 1)$:
 \[
 \phi_f(r) = \begin{cases}
 \frac{r}{f} & [r] \leq f \\
 \frac{1-r}{1-f} & [r] > f
 \end{cases}
 \]

 (i) Show that each ϕ_f is subadditive.
 (ii) Show that $\phi_f(-r) = \phi_{1-f}(r)$. (This means the family is closed under reflection around the y axis)
 (iii) [Sriram’s construction] Consider the function $\psi : \mathbb{R} \to \mathbb{R}$ defined as
 \[
 \psi(r) = \begin{cases}
 \sin(\pi [r]) & 0 \leq [r] < \frac{1}{2} \\
 2 - \sin(\pi (1-[r])) & \frac{1}{2} \leq [r] < 1
 \end{cases}
 \]
 Show that ψ is periodic with period 1 and subadditive.

2. Semidefinite Programs
 (i) Let $S_n \subseteq \mathbb{R}^{n^2}$ be the set of all $n \times n$ positive semidefinite matrices. Show that S_n is a convex cone in \mathbb{R}^{n^2}, i.e., for any PSD matrix A, λA is also PSD for all $\lambda \geq 0$, and for any PSD matrices A, B, $A + B$ is also PSD.
 (ii) Show that any linear program of the form $\max \{c^T x : Ax = b, x \geq 0\}$ can be solved by writing an equivalent semidefinite program.

3. Rank constraints are not convex. Show that the set
 \[
 \{X \in \mathbb{R}^{n^2} : X \text{ is PSD, rank}(X) \leq k\}
 \]
 is not a convex set for any $1 \leq k < n$.

4. Relaxation of Stable Set. Given a graph $G = (V, E)$, with $V = \{1, \ldots, n\}$, show that
 \[
 STAB(G) := \text{conv}\left(\left\{ x \in \mathbb{R}^n : \begin{array}{c}
 x_i + x_j \leq 1 \\
 x_i \in \{0,1\} \\
 \forall ij \in E, \forall i = 1, \ldots, n
 \end{array} \right\} \right) \subseteq \left\{ \text{Proj}_x(X) : \begin{array}{c}
 X_{00} = 1, \\
 X_{ii} = X_{i0} \quad \forall i = 1, \ldots, n, \\
 X_{ij} = 0 \quad \forall ij \in E \\
 X \text{ is PSD}
 \end{array} \right\},
 \]
 where $\text{Proj}_x(X) := (X_{01}, X_{02}, \ldots, X_{0n})$.