AMS 550.472/672: Graph Theory
 Homework Problems - Week VII

Problems to be handed in on Wednesday, March 23 in class: 4.1.28 from textbook, Problem 5 below. A wording of Problem 4.1.28 is given below.

Let $G=(V, E)$ be a simple undirected graph. Let $A, B \subseteq E$ be two different edge cuts of G. Show that the set of edges $A \Delta B$ is an edge cut. Recall that $A \Delta B:=$ $(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)$.

1. Give an example of a graph G whose minimum degree is at least 3 , and yet $\kappa(G)=1$. For every natural number $k \geq 2$, give an example of a graph G whose minimum degree is at least k, and yet $\kappa(G)=1$.
2. Do Problems 4.1.1 a), b). ("connectivity" means $\kappa(G)$ in the textbook)
3. Do Problems 4.1.19. $(\delta(G)$ denotes the minimum degree in the textbook).
4. Do Problems 4.1.14, 4.1.26, 4.1.28. (k-connected means k-vertex connected in the textbook).
5. Let X be a finite set. Let $A_{1}, A_{2}, \ldots, A_{n}, B_{1}, B_{2}, \ldots, B_{n}$ be subsets of X. A subset $Y \subseteq$ X is called a common system of distinct representatives if there exist two bijections f, g : $\{1, \ldots, n\} \rightarrow Y$ such that $f(i) \in A_{i}$ for $i=1, \ldots, n\left(f(i)\right.$ is called the representative of $\left.A_{i}\right)$, and $g(j) \in B_{j}$ for $j=1, \ldots, n\left(g(j) \mathrm{s}\right.$ called the representative of $\left.B_{j}\right)$. (Note that a particular $y \in Y$ may represent A_{i} and B_{j} with $i \neq j$.
Show that a collection of subsets $A_{1}, A_{2}, \ldots, A_{n}, B_{1}, B_{2}, \ldots, B_{n}$ has a common system of representative if and only if

$$
\left|\left(\bigcup_{i \in I} A_{i}\right) \cap\left(\bigcup_{j \in J}\right) B_{j}\right| \geq|I|+|J|-n
$$

for each pair of subsets $I, J \subseteq\{1, \ldots, n\}$. [Hint: Set up a particular graph that models these set interactions. The graph will have two special vertices. Use Menger's Theorem on the two vertices.]

