1. Do Problems 3.2.3, 3.2.4, 3.2.11.
2. Check the Tutte-Berge formula for an odd cycle, i.e., show that for an odd cycle C,

$$
\nu(C)=\min _{\emptyset \subseteq A \subseteq V(C)} \frac{|V|-o c(V(C) \backslash A)+|A|}{2} .
$$

3. Determine whether the graph below has a perfect matching. Justify your answer. Find a maximum matching in the graph and give a short argument to show that it is indeed maximum.

4. Let $G=(V(G), E(G))$ be a general graph and $k \leq|V(G)| / 2$ be a given positive integer. Construct a graph G^{\prime} such that G^{\prime} has a perfect matching if and only if G has a matching of size k. [Hint: Add some vertices and edges to G]
5. Show that Tutte's perfect matching condition implies the Tutte-Berge formula. (Thus, they are equivalent) [Hint: Use the previous exercise]
6. Let $G=(V(G), E(G))$ be a simple graph and let $T \subseteq V(G)$ be a subset of vertices. Show that there is a matching M in G such that all vertices in T are covered by some edge in M if and only if for every $\emptyset \subseteq W \subseteq V(G)$, the number of odd sized components in $G \backslash W$ that are fully contained in T is at most $|W|$. [Hint: Add some vertices and/or edges to G]
7. Construct a 3 -regular simple graph with a cut edge.
8. Show that a tree T has a perfect matching if and only if for every vertex $v, T \backslash\{v\}$ has exactly one odd component.
