## AMS 550.472/672: Graph Theory

 Homework Problems - Week VProblems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

1. Assignment Problem. Suppose we have a set $\left\{J_{1}, J_{2}, \ldots, J_{r}\right\}$ of $r$ jobs to be filled by a pool of $s$ applicants $\left\{A_{1}, A_{2}, \ldots, A_{s}\right\}$. Each job can be filed by at most one applicant and each applicant be assigned to at most one job. Also each job can be filled by only a subset of applicants qualified for the jobs. It is known in advance if a job $J_{i}$ can be filled by applicant $A_{j}$. The goal is to find the maximum number of jobs that can be filled. Formulate this as a maximum matching problem.
2. Show that in a graph $G$ whose minimum degree is $2 \delta$, there is a matching of size at least $\delta$.
3. Use the matrix-tree theorem to show that the number of spanning trees in a complete graph is $n^{n-2}$.
A perfect matching in a graph $G$ is a matching that covers all vertices (and thus, the graph has an even number of vertices).

## 4. Structure of difference of matchings.

(i) Let $M, N$ be two maximum matchings in $G$. Describe the structure of $G^{\prime}:=(V(G), M \Delta N)$.
(ii) Let $M, N$ be two perfect matchings in $G$. Describe the structure of $G^{\prime}:=(V(G), M \Delta N)$.
(iii) Show that a tree can have at most one perfect matching.
5. Let $G$ be a graph with no isolated vertices. Suppose further that $G$ has a unique maximum matching $M$. Show that there are no $M$-alternating paths. Deduce that $M$ is a perfect matching.
6. Let $M$ be a matching in a graph $G$. Show there exists a maximum matching that covers every vertex covered by $M$. Deduce that in a graph with no isolated vertices, every vertex is covered by some maximum matching.
7. A matching $M$ is maximal if for every edge $e \in E(G) \backslash M, M \cup\{e\}$ is not a matching. In other words, there is no edge in the graph that can be added to $M$ and form a larger matching.
(i) Give examples to show that a maximal matching need not be a maximum matching.
(ii) Suppose $M$ is a maximal matching. Show that $|M| \geq \frac{\min -v e r t e x-\operatorname{cover}(G)}{2}$.
8. A line in a matrix is a row or column of the matrix. Show that the minimum number of lines to cover all nonzero entries of a matrix (not necessarily square) is equal to the maximum number of nonzero entries, no two of which lie in a common line.
9. Let $\left(A_{1}, \ldots, A_{p}\right)$ and $\left(B_{1}, \ldots, B_{q}\right)$ be two partitions of a finite set $X$. Show that the minimum cardinality of a subset of $X$ intersecting each set among $A_{1}, \ldots, A_{p}, B_{1}, \ldots, B_{q}$ is equal to the maximum number of pairwise disjoint sets in $A_{1}, \ldots, A_{p}, B_{1}, \ldots, B_{q}$. More precisely, show that

$$
\begin{aligned}
& \min _{S \subseteq X}\left\{|S|: S \cap A_{i} \neq \emptyset, \forall i=1, \ldots, p, \quad \text { and } S \cap B_{j} \neq \emptyset, \quad \forall j=1, \ldots, q\right\} \\
= & \max _{I \subseteq\{1, \ldots, p\}, J \subseteq\{1, \ldots, q\}}\left\{|I|+|J|: A_{i} \cap B_{j}=\emptyset, \quad \forall i \in I, j \in J\right\}
\end{aligned}
$$

10. System of distinct representatives. Let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of a set $X$. We say that $Y$ is a system of distinct representatives $(S D R)$ for $A_{1}, A_{2}, \ldots, A_{n}$ if there is a bijection $f:\{1,2, \ldots, n\} \rightarrow Y$ such that $f(i) \in A_{i}$ for every $i=1,2, \ldots, n$.
(i) Show that a family of subsets $A_{1}, \ldots, A_{n}$ of $X$ has an $S D R$ if and only if

$$
\left|\bigcup_{i \in I} A_{i}\right| \geq|I|
$$

for every subset $I \subseteq\{1,2, \ldots, n\}$.
(ii) Let $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ be two partitions of the same set $X$. Show that there exists a common $S D R$ for both $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ (i.e., there exists $Y \subseteq X$ such that $Y$ is an $S D R$ for both $A_{1}, A_{2}, \ldots, A_{n}$ and $\left.B_{1}, B_{2}, \ldots, B_{n}\right)$ if and only if for every subset $I \subseteq\{1,2, \ldots, n\}, \cup_{i \in I} A_{i}$ intersects at least $|I|$ sets among $B_{1}, B_{2}, \ldots, B_{n}$.
11. Let $G=(A \cup B, E(G))$ be a simple, bipartite graph. Prove the following generalization of Hall's matching condition: Show that

$$
\max -\operatorname{matching}(G)=|A|-\max _{\emptyset \subseteq S \subseteq A}\{|S|-|N(S)|\}
$$

where $N(S)$ denotes the set of neighbors of $S$. [Hint: Add some vertices and edges to the graph]
12. We say two matchings $M$ and $N$ in a graph $G$ are disjoint if they have no common edges, i.e., $M \cap N=\emptyset$. Let $G$ be a simple, $k$-regular (i.e., every vertex has degree $k$ ), bipartite graph. Show that $G$ has $k$ perfect matchings which are pairwise disjoint (see definition of perfect matching above Problem 4). [Hint: Use Hall's condition and induction]
13. Let $G=(A \cup B, E(G))$ be a simple, bipartite graph such that for every edge $x y$ with $x \in A$ and $y \in B, \operatorname{deg}(x) \geq \operatorname{deg}(y)$. Show that there exists a matching that saturates $A$.
14. Let $n$ be a fixed natural number. An $n \times n$ matrix is called a permutation matrix if all its entries are 0 or 1 and every row contains exactly one 1 and every column contains exactly one 1 . How many $n \times n$ permutation matrices are there ? Show that a given $n \times n$ matrix with nonnegative integer entries is the sum of $k$ permutation matrices if and only if the sum in every row and every column is $k$.
15. Show that the $n$-cube graph from HW I has $n$ disjoint perfect matchings (see Problem 14). (There are at least 2 different ways to see this)
16. Let $k, r$ be natural numbers. Let $G$ be a $k$ regular, simple, bipartite graph. Show $G$ contains spanning subgraphs $G_{1}, G_{2}, \ldots G_{\ell}$ such that each $G_{i}$ is $r$-regular, and $E(G)=E\left(G_{1}\right) \uplus E\left(G_{2}\right) \uplus$ $\ldots \uplus E\left(G_{\ell}\right)$ (so the edges are partitioned with no overlaps) if and only if $r$ divides $k$.
17. Do Problem 3.1.21 from the textbook.

