AMS 550.472/672: Graph Theory
 Homework Problems - Week IV

Problems to be handed in on Wednesday, Feb 24: 4, 5, 8.

1. Recall that a tree is always bipartite. Show that a tree always has a leaf in its larger partite set.
2. Let the maximum degree of a vertex in a tree be Δ. Show that there are at least Δ leaves in the tree.
3. Let T be a tree such that every leaf is adjacent to a vertex of degree at least 3 . Show that there are two leaves with a common neighbor.
4. Let $d_{1}, d_{2}, \ldots, d_{n}$ be n strictly positive integers with $n \geq 2$. Show that there exists a tree with vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$ if and only if $d_{1}+d_{2}+\ldots+d_{n}=2 n-2$.
5. Show that a tree with no vertex of degree 2, has more leaves than non-leaf vertices.
6. Oriented Trees (Arborescences). Let T be a undirected tree and let \hat{T} be an orientation of T such that every vertex is the head of at most one edge. Such an oriented tree is called an arborescence.
(i) Show that there exists a vertex that is not the head for any edge. This vertex is called a root of \hat{T}.
(ii) Show that for every vertex there is a unique directed path to it from a root. Thus conclude that \hat{T} has a unique root.
7. Let T be a tree with $2 k$ vertices of odd degree. Prove that we can find k paths $P_{1}, P_{2}, \ldots, P_{k}$ such that $E(T)=E\left(P_{1}\right) \uplus E\left(P_{2}\right) \uplus \ldots \uplus E\left(P_{k}\right)$.
8. Common Intersection property. Let G be a simple graph. We say that a finite collection of subgraphs $G_{1}, G_{2}, \ldots, G_{k}$ has the common intersection property if the following logical implication is true:

$$
\left(\forall i \neq j \quad V\left(G_{i}\right) \cap V\left(G_{j}\right) \neq \emptyset\right) \Longrightarrow\left(V\left(G_{1}\right) \cap V\left(G_{2}\right) \cap \ldots \cap V\left(G_{k}\right) \neq \emptyset\right) .
$$

[In other words, if we have a common vertex for every pair of subgraphs, then there is a common vertex for the whole family.]
(a) Suppose T is a tree, and $T_{1}, T_{2}, \ldots, T_{k}$ are subgraphs of T that are also trees (but not necessarily spanning). Show that T_{1}, \ldots, T_{k} have the common intersection property.
(b) Show that a simple graph G is a forest if and only if every collection of subpaths (subgraphs that are paths) G_{1}, \ldots, G_{k} has the common intersection property.
[Hint: Induction is your best friend!]
9. Let G be a simple n-vertex graph having $n-2$ edges. Show that either G has an isolated vertex, or has two components each of which is a tree with at least 2 vertices.
10. Simultaneous exchange property. Let T, T^{\prime} be two distinct spanning trees of a simple graph G. For any $e \in E(T) \backslash E\left(T^{\prime}\right)$, show that there exists $e^{\prime} \in E\left(T^{\prime}\right) \backslash E(T)$ such that both $(T \backslash\{e\}) \cup\left\{e^{\prime}\right\}$ and $\left(T^{\prime} \backslash\left\{e^{\prime}\right\}\right) \cup\{e\}$ are spanning trees of G.

