AMS 550.472/672: Graph Theory

Homework Problems - Week III

Problems to be handed in on Wednesday, Feb 17: 2, 7, 10, 11(a).

1. Girth of a graph. We define girth of a graph G as the length of the shortest cycle in G.
(a) Let G be a simple graph with girth 4 (these graphs are called triangle-free). Further, suppose that every vertex has degree k, where k is some natural number. Show that G has at least $2 k$ vertices.
(b) Let G be a simple graph with girth 5 (these graphs are called quadrilateral-free). Further, suppose every vertex has degree k, where k is some natural number. Show that G has at least $k^{2}+1$ vertices.
2. Let G be a connected simple graph with an even number of edges, so $|E(G)|=2 k$ for some natural number k. Show that $E(G)$ can be partitioned as $E(G)=E\left(P_{1}\right) \uplus E\left(P_{2}\right) \uplus \ldots \uplus E\left(P_{k}\right)$ where $P_{i} \subseteq G$ is a path of length two for each $i=1, \ldots, k$. [If you need a hint, please email me].
3. Let $G=(V(G), E(G))$ be a simple bipartite graph with bipartition $V(G)=V_{1} \cup V_{2}$. Let $n=|V(G)|, r=\left|V_{1}\right|, s=\left|V_{2}\right|$ and $m=|E(G)|$. Show that $m \leq r s$. Deduce that $m \leq \frac{n^{2}}{4}$ and describe the graphs where this holds at equality.
4. Let G be a simple triangle-free graph, such that every pair of non-adjacent vertices have exactly two common neighbors. Show that G is regular, i.e., every vertex has the same degree.
5. Show that for any directed graph $G=(V(G), E(G)), \sum_{v \in V(G)} d^{+}(v)=|E(G)|=\sum_{v \in V(G)} d^{-}(v)$.
6. Prove that there exists an n-vertex tournament with in-degree equal to out-degree for every vertex iff n is odd.
7. Show that in any tournament, there is a directed path which visits every vertex.
8. Directed acyclic graphs. A directed graph which has no directed cycles is called a directed acyclic graph $(D A G)$. Note that the underlying undirected graph may have cycles.
(i) Show that in any directed acyclic graph, there is a vertex whose in-degree equals 0, i.e., it is not the head for any edge. Such a vertex is called a source.
(ii) Show that in any directed acyclic graph, there is a vertex whose out-degree equals 0 , i.e., it is not the tail for any edge. Such a vertex is called a sink.
(iii) Show that in any directed acyclic graph, one can order the vertices so as to respect edge directions: i.e., show there exists a one-to-one and onto mapping $f: V(G) \rightarrow\{1, \ldots, n\}$ such that for every directed edge $(u, v), f(u) \leq f(v)$. So every edges points from a lower numbered vertex to a higher numbered vertex. This kind of an ordering is called a topological sort of the vertices of a DAG.
(iv) We say that a partition of the vertices $V=L_{0} \uplus L_{1} \uplus \ldots \uplus L_{k-1}$ is a stratification with k levels, if every directed edge e is between vertices in different levels, and the edge points from a lower indexed level to a higher indexed level. Notice that the topological sorting from part (iii) is a stratification with $|V|$ levels. Let G_{0} be a directed acyclic graph and let \hat{L}_{0} be the set of sources in G_{0}. Consider the following graphs. For each $i=1,2, \ldots$, define $G_{i}=G_{i-1} \backslash L_{i-1}$ and L_{i} is the set of sources in G_{i}. Notice that for some natural
number k^{*}, for every $i \geq k, G_{i}$ is just the empty graph, i.e., empty set of vertices and empty set of edges. Show that $V=L_{0} \uplus L_{1} \uplus \ldots \uplus L_{k^{*}-1}$ is a stratification.

Bonus question: Show that k^{*} above is the smallest value of $k \in \mathbb{N}$ such that there exists a stratification with k levels.
9. Show that a forest with k edges has $n-k$ connected components.
10. Let G be a connected n-vertex graph. Show that G has exactly one cycle if and only if G has exactly n edges.
11. Cut Vertex in a graph. A vertex $v \in V(G)$ is a cut-vertex of G, if $G \backslash\{v\}$ has more connected components than G.
(a) Show that every graph has at least 2 vertices that are NOT cut vertices.
(b) Suppose G is a simple connected graph with exactly two vertices that are not cut vertices, then show that G is a path.

