AMS 550.472/672: Graph Theory Homework Problems - Week XIII

- 1. Let $k \in \mathbb{N}$ be a fixed natural number. Recall that the Ramsey number R(k) is the smallest natural number n such that every graph on n vertices contains K_k or $\overline{K_k}$. Show that for every $N \in \mathbb{N}$, $R(k) > N {N \choose k} 2^{1-{k \choose 2}}$. (Using the right choice of N, this can be used to show that $R(k) > \frac{k}{e} 2^{k/2}$ which is a slight improvement over the bound we saw in class) [Hint: Use expectation to compute the number of "bad" subgraphs and then remove vertices to get rid of these "bad" subgraphs]
- 2. Let p(n) be a fixed function (could be the constant function). Suppose \mathcal{P}_1 is a graph property that holds for almost all graphs in $\mathcal{G}(n, p)$, and \mathcal{P}_2 be another graph property that holds for almost all graphs in $\mathcal{G}(n, p)$.
 - (i) Show that $\mathcal{P}_1 \cap \mathcal{P}_2$ is also a graph property.
 - (ii) Show that the property $\mathcal{P}_1 \cap \mathcal{P}_2$ holds for almost all graphs.
- 3. Let k be a fixed natural number and $0 be a constant. Show that almost every graph in <math>\mathcal{G}(n, p)$ is k-connected. [Hint: Show that, in fact, for almost every graph, all pairs of vertices have k paths of length two connecting them.]
- 4. Let $\epsilon > 0$ and let 0 < p(n) < 1 be a function of $n \in \mathbb{N}$, and let r(n) be an integer valued function of n such that $r(n) \ge (1+\epsilon)\frac{2\ln n}{p(n)}$ for all $n \in \mathbb{N}$. Show that almost no graph in $\mathcal{G}(n,p)$ contains r(n) independent vertices.
- 5. Do 8.5.26.
- 6. Let $0 < \epsilon \le 1$ be a constant and $p(n) = (1 \epsilon)(\ln n)\frac{1}{n}$.
 - (i) Show that $n(1-p)^{n-1} \to \infty$ as $n \to \infty$.
 - (ii) Show that almost every graph in $\mathcal{G}(n,p)$ contains an isolated vertex.
 - (iii) Find a function m(n) such that almost every graph in $\mathcal{G}(n, p)$ has at least m(n) isolated vertices.
- 7. Find a probability function p(n) such that almost every graph in $\mathcal{G}(n, p)$ is disconnected, but the expected number of spanning trees of G tends to infinity as $n \to \infty$. (This concretely shows an example where it is impossible to lower bound the probability $P(X \ge 1)$ by simply lower bounding E[X] - Markov doesn't work the other way)
- 8. Show that if $np(n) \to 0$ as $n \to \infty$ then almost every graph in $\mathcal{G}(n,p)$ is a forest. [Hint: Markov]
- 9. Let $k \in \mathbb{N}$ be fixed. Does the property of containing any tree on k vertices have a threshold function in $\mathcal{G}(n, p)$ (we are not considering a fixed tree, as discussed in class)? If so, which one? If not, why not?
- 10. Let $k \in \mathbb{N}$ be fixed. Determine the threshold function for containing the k-cube Q_k in $\mathcal{G}(n, p)$. (see Problem 4 on HW I).