AMS 550.472/672: Graph Theory Homework Problems - Week XIII

1. Let $k \in \mathbb{N}$ be a fixed natural number. Recall that the Ramsey number $R(k)$ is the smallest natural number n such that every graph on n vertices contains K_{k} or $\overline{K_{k}}$. Show that for every $N \in \mathbb{N}, R(k)>N-\binom{N}{k} 2^{1-\binom{k}{2}}$. (Using the right choice of N, this can be used to show that $R(k)>\frac{k}{e} 2^{k / 2}$ which is a slight improvement over the bound we saw in class) [Hint: Use expectation to compute the number of "bad" subgraphs and then remove vertices to get rid of these "bad" subgraphs]
2. Let $p(n)$ be a fixed function (could be the constant function). Suppose \mathcal{P}_{1} is a graph property that holds for almost all graphs in $\mathcal{G}(n, p)$, and \mathcal{P}_{2} be another graph property that holds for almost all graphs in $\mathcal{G}(n, p)$.
(i) Show that $\mathcal{P}_{1} \cap \mathcal{P}_{2}$ is also a graph property.
(ii) Show that the property $\mathcal{P}_{1} \cap \mathcal{P}_{2}$ holds for almost all graphs.
3. Let k be a fixed natural number and $0<p<1$ be a constant. Show that almost every graph in $\mathcal{G}(n, p)$ is k-connected. [Hint: Show that, in fact, for almost every graph, all pairs of vertices have k paths of length two connecting them.]
4. Let $\epsilon>0$ and let $0<p(n)<1$ be a function of $n \in \mathbb{N}$, and let $r(n)$ be an integer valued function of n such that $r(n) \geq(1+\epsilon) \frac{2 \ln n}{p(n)}$ for all $n \in \mathbb{N}$. Show that almost no graph in $\mathcal{G}(n, p)$ contains $r(n)$ independent vertices.
5. Do 8.5.26.
6. Let $0<\epsilon \leq 1$ be a constant and $p(n)=(1-\epsilon)(\ln n) \frac{1}{n}$.
(i) Show that $n(1-p)^{n-1} \rightarrow \infty$ as $n \rightarrow \infty$.
(ii) Show that almost every graph in $\mathcal{G}(n, p)$ contains an isolated vertex.
(iii) Find a function $m(n)$ such that almost every graph in $\mathcal{G}(n, p)$ has at least $m(n)$ isolated vertices.
7. Find a probability function $p(n)$ such that almost every graph in $\mathcal{G}(n, p)$ is disconnected, but the expected number of spanning trees of G tends to infinity as $n \rightarrow \infty$. (This concretely shows an example where it is impossible to lower bound the probability $P(X \geq 1)$ by simply lower bounding $E[X]$ - Markov doesn't work the other way)
8. Show that if $n p(n) \rightarrow 0$ as $n \rightarrow \infty$ then almost every graph in $\mathcal{G}(n, p)$ is a forest. [Hint: Markov]
9. Let $k \in \mathbb{N}$ be fixed. Does the property of containing any tree on k vertices have a threshold function in $\mathcal{G}(n, p)$ (we are not considering a fixed tree, as discussed in class) ? If so, which one ? If not, why not ?
10. Let $k \in \mathbb{N}$ be fixed. Determine the threshold function for containing the k-cube Q_{k} in $\mathcal{G}(n, p)$. (see Problem 4 on HW I).
